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The Sprawlter Graph Readability Metric:
Combining Sprawl and Area-aware Clutter
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Abstract—Graph drawing readability metrics are routinely used to assess and create node-link layouts of network data. Existing
readability metrics fall short in three ways. The many count-based metrics such as edge-edge or node-edge crossings simply provide
integer counts, missing the opportunity to quantify the amount of overlap between items, which may vary in size, at a more fine-grained
level. Current metrics focus solely on single-level topological structure, ignoring the possibility of multi-level structure such as large and
thus highly salient metanodes. Most current metrics focus on the measurement of clutter in the form of crossings and overlaps, and do
not take into account the trade-off between the clutter and the information sparsity of the drawing, which we refer to as sprawl. We
propose an area-aware approach to clutter metrics that tracks the extent of geometric overlaps between node-node, node-edge, and
edge-edge pairs in detail. It handles variable-size nodes and explicitly treats metanodes and leaf nodes uniformly. We call the
combination of a sprawl metric and an area-aware clutter metric a sprawlter metric. We present an instantiation of the sprawlter metrics
featuring a formal and thorough discussion of the crucial component, the penalty mapping function. We implement and validate our
proposed metrics with extensive computational analysis of graph layouts, considering four layout algorithms and 56 layouts
encompassing both real-world data and synthetic examples illustrating specific configurations of interest.

Index Terms—Graph drawing, graph drawing metrics, readability metrics, aesthetic criteria

F

1 INTRODUCTION

COMPUTING quality metrics is an important and popular
quantitative approach to evaluate and generate visual-

izations [1], especially for node-link diagrams, an intuitive
and effective visual representation for relationships between
entities in a graph. Graph layout has been studied for many
years, with major effort devoted to automatic generation
of readable and faithful node-link graph layouts [2], [3].
One of the important aspects in making good layouts is to
have good metrics to measure the readability or faithfulness,
which are used by graph layout algorithms either explicitly
or implicitly. In particular, we focus on readability metrics,
also historically known as aesthetic criteria. Many readabil-
ity metrics have been proposed in previous papers, such
as edge-edge crossings, node-edge crossings, edge bends,
and angular resolution. Many empirical studies have been
conducted to evaluate their correspondence with human
judgements [4], [5]. We note three problems with many
previous readability metrics.

First, they report simple integer counts of detrimental
events such as node-edge crossings. Although counts are
straightforward to understand and to compute, they lack the
precision to capture how badly an event hinders readability,
such as how much an edge crosses a node as measured in
length, or whether two edges cross with a glancing angle.

Second, they only compute on single-level structure,
even in a multi-level graph layout, which are used in many
domains [6], especially for large graphs. A multi-level graph
combines a cluster hierarchy with a base graph, where
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the original graph nodes comprise the lowest leaf level of
the hierarchy, and metanodes (also known as clusters or
subgraphs) at higher levels contain lower-level nodes. The
metanodes are typically more salient than the leaf nodes
because they are bigger in size, but this important multi-
level structural information is not taken into account when
measuring readability by the previous metrics.

Third, they are mainly clutter-only metrics that only
penalize crossings and do not fully assess the layout quality.
In addition to clutter, information density [7] (also known
as data-ink ratio [8] or space efficiency [9]) also matters.

We use the term geometric sprawl, or sprawl for short,
to capture disparity between the size of small features and a
potentially large canvas on which they are spread out. This
measure is different from topological sparseness: sprawl
considers geometric layout information such as coordinate
positions and area. There is an important trade-off between
clutter and sprawl: it is possible to eliminate all overlaps
(especially for node-node and node-edge overlap) by simply
either pushing the nodes away from each other or shrinking
the node size until they are completely separated, but at
the cost of tiny nodes and edges spread out on a huge
canvas. The quantification of sprawl itself is not new; it is the
inverse (reciprocal) of metrics recently called compactness
by Kieffer et al. [10] and visualization coverage by Dunne
et al. [11]. The idea of minimizing the metric of total area is
longstanding [12]. The novelty of our work lies in the direct
capture of this readability trade-off, and our emphasis that
it constitutes the most central property of graph legibility.

We illustrate the three problems above in Fig. 1. All three
example layouts show two-level synthetic graphs contain-
ing four colored metanodes drawn as minimum bounding
circles of their constituent leaf nodes. The count does not
reflect the fact that layout (b) is more cluttered than (a) in
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Node-node overlap (a) Some (b) More (c) Little, but sparse

Layout

Area-aware clutter (A) 14.17 + 1.74 = 15.91 17.97 + 6.06 = 24.03 11.84 + 0.56 = 12.40
Count-based clutter (C) 1 + 5 = 6 1 + 5 = 6 1 + 1 = 2

Sprawl (S) 8.06 8.45 37.50
Sprawlter metric (T )

√
8.06× 15.91 = 11.32

√
8.45× 24.03 = 14.25

√
37.50× 12.40 = 21.57

Fig. 1. Comparison of approaches to measuring node-node crossing in three synthetic 2-level graph layouts. (a) Some overlap. (b) More overlap.
(c) More sprawl. Our sprawlter metric (T ) is the geometric mean of the sprawl (S) and area-aware clutter metrics (A). Clutter metrics (A and C)
are broken down into metanode vs. leaf node pairs. For all metrics, larger numbers are worse, indicating less readability. The increased overlap
between leaf nodes and the metanode pair is captured by the area-aware metric (24.03 > 15.91). The increased sprawl when nodes are shrunk in
size and pushed away from each other to avoid overlap, resulting in a more sparse layout, is captured by the sprawl (37.50 > 8.45). Their mean (T)
assesses the trade-off between clutter and sprawl in the geometric configurations.

terms of both leaf node overlaps and metanode overlaps, as
there are exactly six crossings in both layouts (the integer
count problem). Nodes in layout (c) are shrunk and spread
out on a larger canvas resulting in fewer overlaps, but the
layout suffers from poor space efficiency [9] due to sprawl.

To address the first two problems, we contribute an area-
aware approach for three families of clutter metrics: node-
node (NN), node-edge (NE), and edge-edge (EE) crossings.
It measures the amount of geometric overlaps (NN, NE)
or crossing angle (EE) in both single-level and multi-level
graph layouts, then computes a penalty for each geometric
measurement, and finally sums the individual penalties as
a NN, NE, or EE clutter metric. We identify general re-
quirements and make specific choices for the crucial step of
mapping geometric measurements to penalties. To address
the third problem, we contribute the sprawlter metric to
capture the trade-off between sprawl and clutter. It com-
putes the geometric mean of sprawl and area-aware clutter
for each of the NN, NE, and EE families. We implement
these new metrics, and validate their benefits by comparing
quantitative computational results of our approaches to tra-
ditional count-based approaches and recent proposals [11],
with respect to qualitative assessments of layout pictures.

2 RELATED WORK

We discuss related work on readability metrics and the
evaluation of these metrics.

2.1 Graph drawing readability metrics
We identify two categories of graph drawing metrics: single-
purpose and compound metrics. The former only quantify
one single feature of the layout, while the latter explicitly
combine or implicitly reflect multiple single-purpose ones.

2.1.1 Single-purpose metrics
The single-purpose metrics most relevant to our own work
focus on how clearly the drawn elements of a graph layout
can be seen. There are many other types of metrics that
are less relevant, including those related to graph topology

such as average degree of nodes or modularity, those related
to faithfulness such as shape-based metrics [13], and those
measuring specific aspects of perception and cognition such
as symmetry [14], [15], edge bends [5], and edge continu-
ity [16]. A recent paper uses many metrics to build a neural
network to assess quality of graph layout, but does not focus
on readability metrics [17].

Well over a dozen single-purpose readability metrics
have been proposed, with some evaluated by controlled ex-
periments with human subjects. Early work from Purchase
formally documented several metrics [18], with many subse-
quent experiments that compare these and other metrics to
human judgements [4], [15], [16]; Dunne and Shneiderman
provide a survey of empirical studies on readability met-
rics [19]. We categorize these metrics by the three problems
we note above: clutter, multi-level, and sprawl.

Clutter metrics. Clutter is an important and obvious
readability obstacle. The well known clutter-related metrics
are edge-edge, node-edge, and node-node crossings, which
report discrete integer numbers of the crossing events. Some
metrics report continuous real numbers, such as angular
resolution at nodes [18], which measures the minimum
angle of edges that are incident to an individual node,
and angular resolution at edges, which measures the angles
between crossing edges, or the total resolution of Argyriou
et al. [20] that combines them.

The impact of crossing angles, namely the angle at which
two edges cross, has been heavily studied. Although Ware
et al. did not find significant relevance between human per-
formance and average crossing angles in their multi-factor
experiment using global graph layouts as stimuli [16], a later
single-factor experiment using simple synthetic drawings
conducted by Huang et al. showed that the crossing angles
have a significant impact on response time [21]. Dunne et
al. proposed another version of edge crossing angle metric,
defined as the average deviation of the crossing angles from
an ideal angle (70◦) [11]. Their metric is 0 for the ideal
crossing angle, which ignores the fact that there is still a
detrimental crossing event that reduces readability (R2 in
section 4). Our own edge-edge metric differs with an explicit
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function that maps angles into penalties instead of using
them directly, allowing us to clearly distinguish even ideal
crossing angles from the non-crossing case.

Multi-level metrics. Some metrics measure geometric
separability, namely how compactly leaf nodes lie within
or are spread between metanodes, including edge length
variability [22], [23], which is also applicable to single-level
layouts. However, they do not recognize salience of clutter
in a multi-level structure. The many topological separability
metrics, such as modularity, conductance, coverage, per-
formance, and so on [24], [25] do not measure geometric
configurations. The only true geometric metrics in the lit-
erature that address the multi-level problem are ambiguity
measures for community structure from Wang et al. [26]
and the group overlap metric from Dunne et al. [11]. Wang’s
approach focuses on the ambiguity caused by overlap of
metanodes rather than readability, where they considered
the geometric distribution of leaf nodes within metanodes
rather than salience of clutter. It is later used in their follow-
up papers to assess readability of clusters [27], [28]. Dunne’s
proposal for group overlap does compare overlaps between
a metanode and leaf nodes, but not between metanodes,
which are more visually salient. Our approach features a
uniform treatment of nodes and metanodes to capture the
clutter in both single-level and multi-level graph layouts.

Sprawl metrics. Several simple sprawl-related metrics
have been proposed, including total drawing area, the max-
imum edge length, sum of edge lengths, and the aspect
ratio of the drawing canvas [12]. The multiplicative inverse
of sprawl, the metric that we use, has previously been
called compactness by Kieffer et al. [10] and visualization
coverage by Dunne et al. [11]. We use the inverse quantity to
emphasize the problematic nature of sparsity as analogous
to clutter. Kieffer et al. found evidence of its importance
in small user-generated graph layouts [10], and Dunne et
al. proposed it as a stand-alone separate metric for NN. The
novelty of our work lies in exploring the trade-off between
sprawl and clutter, not introducing the sprawl metric itself.

2.1.2 Compound metrics

Individual single-purpose metrics can be combined into a
compound metric. Such compound metrics are often im-
plicitly incorporated into automatic layout algorithms, as
with physics models that measure a graph layout with
an artificial physics quantity, such as force (GEM [29]),
energy (LinLog [22]), or stress (NEATO [30]), as if the nodes
and edges are real-world physical objects. For example,
force models typically encourage uniform edge lengths and
clustering around high-degree nodes, and discourage node-
node overlaps. Some proposals have been made to add other
types of forces to explicitly incorporate more single-purpose
metrics [31], [32]. A compound metric explicitly proposed in
previous work is a weighted sum of multiple single-purpose
metrics [33], but justifying the weights remains an open
problem. Our sprawlter metric, where sprawl and clutter
is combined, is also an example of an explicit compound
metric. We emphasize the specific trade-off between clutter
and sprawl as directly opposite quantities, rather than at-
tempting to combine very disparate quantities of all possible
metrics into a single compound quantity.

2.2 Evaluation of graph drawing metrics

Previously proposed metrics have been evaluated either
with human subjects or mathematical models, with the
goal of obtaining a deeper understanding of the nuances
and ranking the metrics by perceptual or cognitive impact.
One approach is to gather quantitative performance data
or qualitative feedback on the stimuli graph layouts from
human observers, where the stimuli can be generated by au-
tomatic computational algorithms or human manual labour.
There are many papers from earlier years that followed this
general approach. Typical examples are from Purchase et
al. [5], [14], [34], [35], Ware et al. [16], Huang et al. [21],
[36], Kobourov et al. [37]. Another approach is to gather
user-generated layouts in order to understand their mental
model of graph layouts. Van Ham and Rogowitz asked
participants to position the nodes in a graph layout and
investigated which metrics are useful for explaining their
layouts [23]. Following this thread, Dwyer et al. compared
user-generated layouts with automatic layouts [15]. A third
approach focuses on quantitative models of layouts and
relevant tasks. McGuffin et al. evaluated space efficiency of
visual representations of trees mathematically and provided
design guidelines accordingly [9]. Dawson et al. proposed
and evaluated a predictive model of human behaviour
tracing paths through a graph [4]. None of these evalua-
tions provide direct guidance on how to address the three
problems that we tackle in this work.

3 SPRAWLTER METRICS

We describe the computation of the sprawlter metrics in
this section including the general idea, technical details, and
how they address the three problems presented in the intro-
duction. First, for each clutter event, the amount of overlap
(area of node-node overlap, length of node-edge overlaps,
and angle of edge-edge crossing) is measured. Then, the
overlap measurement is transitioned into a penalty – an
indication of the degree of clutter – with a penalty mapping
function. We elaborate further on these penalty mapping
functions in section 4. Finally, these penalties for each indi-
vidual clutter event are summed up for node-node overlap
(NN), node-edge overlap (NE), and edge-edge crossing (EE)
respectively as the area-aware metrics. Meanwhile, sprawl is
also computed based on geometric properties of the entire
layout. The sprawlter metric is a geometric mean combining
the sprawl and area-aware metric.

3.1 Graph layout definitions

We define a graph G = (V,E), where V is the set of nodes
and E is the set of edges. The graph G can be either a single-
level graph or a multi-level graph; in the latter case, we
simply expand the definition of the nodes v ∈ V to be either
leaf nodes or metanodes. Since we treat both of these cases
in a completely uniform way, our algorithm does not need to
further consider the hierarchy H that is part of a compound
graph, except for a low-level implementation detail (when
avoiding computation of overlaps between a metanode and
its descendants). We do not consider metaedges, which are
analogous to metanodes, but are not commonly used in
current layout algorithms.
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We denote the geometric measurements by functions of
graph elements: the area of a node area(v), overlapping
area of two nodes area(v1, v2), and similarly, length of an
edge length(e), diameter of a node length(v), overlapping
length of a node-edge pair length(v, e). The crossing acute
angle (in radians) of two edges is angle(e1, e2), and its
complement is c angle(e1, e2) = π/2−angle(e1, e2). When
they just begin to touch, we consider them to intersect but
with zero overlap: area(v1, v2) = 0, or length(v, e) = 0.
When they do not intersect, the measurement function is
undefined – it is not zero.

3.2 Measuring geometric overlap

We measure the overlapping area of a node pair, overlap-
ping length of a node-edge pair, and (the complement of)
crossing angle of an edge pair if the nodes or edges intersect
with each other. Fig. 2 shows an increasing amount of
overlap between pairs from left to right, from none, to near-
minimum, some, and near-maximum overlap. Obviously,
the degree of clutter corresponds to the amount of overlap.
In the area case, the degree of clutter corresponds positively
to area(v1, v2) or length(v, e). We consider length to be
the degenerate version of area, and below often use area
to mean both quantities. In the angle case, the degree of
clutter corresponds positively to c angle(e1, e2), where a
perpendicular angle of 90 degrees is the least cluttered and
a glancing angle of 0 degree – where one line segment is on
top of the other – is the most cluttered. We thus consider the
complement of the crossing angle rather than the crossing
angle itself. In Fig. 2, the count-based metrics are only able
to distinguish between the leftmost column with no overlap
and the other three columns, but not between those three.

None Near-min Some Near-max

Area

Length

Angle

Fig. 2. Increasing amount of overlap between node-node, node-edge,
and edge-edge pairs. Count-based metrics can only distinguish no
overlap from the other three cases, but not between them.

3.3 Mapping measurements to penalties

We map the measured amount of overlap to penalties with
a penalty mapping function in order to match the mea-
surement to the degree of perceived clutter. Generally, we
denote the penalty mapping functions by f(x), where x
is the overlapping measurement. Specifically, for the three
different families, we use fNN (x), fNE(x), and fEE(x).
Note that for the EE family, x denotes the complementary
angle so that the valence of fEE(x) matches the others
(since an original angle of 0 is the worst case).

We avoid the trivial instantiation of f(x) where ge-
ometric measurements are used directly as penalties (i.e.
f(x) = x), because the measured area / length / angle

Algorithm 1: Computation of node-node area-aware
metrics.

Input : G = (V,E)
Output: total penalty ANN (G) and count CNN (G)

1 totalPenalty← 0
2 count← 0

3 for v1 ∈ V do
4 for v2 ∈ V do
5 if v1 6= v2 && !IsAncOrDesc(v1, v2) then
6 if CheckIntersection(v1, v2) then
7 x← ComputeOverlapArea(v1, v2)
8 penalty← PenaltyFunc(x, v1, v2)
9 totalPenalty← totalPenalty + penalty

10 count← count + 1

11 return totalPenalty, count

does not in general equal the degree of visual clutter.
In particular, the distinction between the no overlap and
touching cases is crucial (first and second columns in Fig. 2),
but f(0) = 0 would fail. The penalty mapping function is
discussed further in Sect. 4.

3.4 Summing penalties
We directly sum up penalties of all overlapping pairs of
node-node, node-edge, and edge-edge in a graph layout
respectively, and refer to the three resulting total penalties
as area-aware metrics, denoted by ANN , ANE , and AEE ,
while the count-based metrics are denoted by CNN , CNE ,
and CEE .

These area-aware metrics address the integer-count
problem with a more precise indication of the degree of
clutter. They also address the single-level problem for NN
and NE, because the area awareness automatically captures
the hierarchical information in multi-level graph layouts.
Metanodes increase in area and diameter at ascending levels
of the hierarchy: higher-level metanodes are larger than
their constituent metanodes at lower levels, and than their
leaf nodes at the lowest level. Hence, summing area or
length penalties is analogous to a weighted sum of binary
counts, where larger overlaps are weighted more heavily
than smaller ones.

We show the pseudocode to compute the node-node
area-aware metric in Alg. 1; the similar analogs for NE and
EE are in Sect. S2 of supplemental materials. The condition
statement in line 1 checks for validity of the node pair, where
the function IsAncOrDesc(v1, v2) checks if one node is the
ancestor / descendant of the other in the node hierarchy.
Function CheckIntersection(v1, v2) returns true if v1 and
v2 intersect each other.

3.5 Combining clutter metrics with sprawl
While clutter indicates overlaps and occlusions of nodes
and edges, sprawl indicates geometric sparsity of graph
elements on a drawing canvas, as illustrated in Fig. 1. The
relevant factors contributing to sprawl include total drawing
area (typically the axis-aligned minimum bounding box of
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the entire layout), node areas, edge lengths, and the number
of nodes and edges. Spreading out nodes of a fixed size on
a larger canvas would increase the sprawl, for example.

We quantify sprawl by dividing the total drawing area
of a graph layout G by the area occupied by all nodes
(excluding overlaps). It is the reciprocal of the compactness
from Kieffer et al. [10] or the visualization coverage from
Dunne et al. [11]. Formally:

S(G) = area(G)/area(
⋃
v∈V

v) (1)

S(G) denotes the sprawl, and area(G) the total drawing
area of the graph layout G. The area of union of all nodes
captures the intuition behind sprawl well by accounting
for variation in node sizes. We also considered other al-
ternatives. If we use the number of nodes, |V |, as the
denominator, it would not account for absolute node sizes:
for example, the sprawl of layout (b) and layout (c) in
Fig. 1 would be the same. If we use the smallest node
area, min{area(v)|∀v ∈ V }, the resulting ratio would not
gracefully handle relative node size variation: for example,
a graph with 1000 large nodes and one tiny node would be
over-penalized.

There is a direct trade-off between clutter and sprawl:
for a fixed node size, the more spread-out the nodes are, the
less clutter there would be and the more sprawl there would
be. However, the interplay between clutter and sprawl is
not strictly a zero-sum game: it is very possible to keep
clutter low while having perceivable node sizes (or edge
lengths) and reasonable total drawing area. It is common
to combine multiple values by computing a mean of them.
In mathematics, there exists many different versions of
means [38] for different purposes. We choose the geometric
mean (i.e. square root of the product of two positive values)
because it is capable of normalizing different ranges of the
constituent values: e.g. a 10% change in sprawl has the
same effect as a 10% change in clutter. It is more suitable
than the commonly-used alternatives of the harmonic mean,
arithmetic mean, and quadratic mean. The harmonic mean
is usually dominated by the minimum of the two values; a
typical usage is to combine precision and recall for machine
learning models. The arithmetic mean requires that the
values have identical range to avoid unfair averaging. The
quadratic mean is often used to measure errors between
estimations and ground truths.

The sprawlter metric (denoted by T ) for NN is stated as
follows, and those of NE and EE have the same form.

TNN (G) =
√
S(G) ·max{ANN (G), 1} (2)

We impose a lower bound for the area-aware compo-
nent: when the area-aware metric, or generally, the clutter
measurement, is very small, the sprawlter metric should
retain the sprawl-aware information; otherwise sprawl has
little influence on the sprawlter metric in such situations.
In contrast, we do not need to impose any bound for the
sprawl as it is always greater than or equal to 1.

We note that the general idea of sprawlter is completely
independent of area-awareness: an instantiation could be
designed for purely count-based metrics.

4 PENALTY MAPPING FUNCTION

The previous section provides an overview of the sprawlter
metrics computation, which has the penalty mapping func-
tion at its core. We now discuss this crucial and challenging
component in detail.

The penalty mapping function, f(x), takes a geometric
measurement of a single overlap event (area or length or
complementary angle), and emits a number to indicate the
degree of clutter for this event. In short, it is a mapping
between overlap and clutter.

4.1 General requirements

We identify four important general requirements for the
penalty mapping functions, illustrated in Fig. 3.

x: geometric measurement

f(x): penalty

0

minPenalty

maxPenalty

maxMeasurement (M)

1

for area-aware approachf (x) =? (1)

for count-based approachf (x) = 1 (2)

Fig. 3. General requirements for area-aware penalty mapping function,
vs. a constant function f(x) = 1 for the count-based approach.

R1) Increasing penalty. ∀x1 < x2, f(x1) < f(x2). The
penalty should increase as the overlap increases. In
Fig. 3, f(x) for the area-aware approach increases
from a minimum to a maximum penalty, as opposed
to a flat line for count-based approach. This require-
ment is necessary to distinguish between minimum,
some, and maximum degree of clutter.

R2) Substantial touching penalty. f(0) >> 0. In order
to clearly distinguish the no-overlap case from a
very small overlap, we require a substantial mini-
mum penalty that is incurred as soon as two ele-
ments touch. That is, f(0) should be substantially
greater than zero.

R3) Count calibration. minPenalty < 1 <
maxPenalty. The sprawlter metrics are intended
to be a drop-in replacement to count-based
metrics that provide richer information, and thus
the penalties need to bracket, and be directly
comparable to, the count-based value of 1. The
touching case creates less clutter than what is
captured by a simple count; the full overlap case
demands a higher penalty.

R4) Local function. fNNv1,v2(x) instead of fNNG (x). We
need to have a function that is calculated separately
for each pair of nodes that can incorporate local
knowledge of their individual sizes, rather than an
identical global function that applies to all node
pairs independently of their size. For the EE family,
since all crossing angles share a universal unit (ra-
dians) and are bounded within the range [0, π/2], a
local function is equivalent to a global one. In the



1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2970523, IEEE
Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUASLIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXX 2020 6

notation, we use subscripts to indicate whether the
function is local or global.

In order to calibrate penalties to counts (R3), it is neces-
sary to normalize the absolute node areas (and edge lengths)
to relative areas. We divide the area of each node by the
smallest node area in the layout such that the normalized
area of the smallest nodes is 1. If all nodes have the same
size, the normalized area of every node is 1; if node sizes
vary, the normalized areas of larger nodes are greater than
1. Similarly, for lengths, we divide them by the diameter of
the smallest node. There is no need to normalize angles as
they are all in radians. We use normalized areas and lengths
below, unless otherwise specified.

4.2 Specific choices

We make specific choices to fulfill the general requirements
of the penalty mapping function, while there exist other
alternatives. Our goal is to construct a specific function that
is simple and easy to understand. Fig. 4 shows the NN
penalty mapping function for the smallest node pair.

C1) We choose a power function: f(x) is linear to
xγ , where γ denotes the exponent in the power
function and dictates the curve shape of f(x). In
Fig. 4, we show the curves for three different γ
values. We chose γ based on previous empirical
work [21], [39]. The longstanding psychophysical
power law proposed by Stevens [39], which is a
mapping between physical stimulus and perceived
sensation, inspired our choice of γ = 0.7 for node-
node overlap areas and γ = 1.0 for node-edge
overlap lengths. More recently, Huang et al. [21]
suggest that human performance is correlated to
the crossing angle with a quadratic term in their
preliminary user evaluation, so we use a quadratic
function (γ = 2.0) for edge-edge crossing angles.
To check the impact of this choice, we conducted
theoretical and computational analysis comparing a
linear EE penalty mapping function and a quadratic
one. We found that difference between the two is
very small except when there are many glancing
crossing angles. The details of this comparison are
in Supp. Sect. 1.2.

C2) We choose a minimum penalty proportional to the
node sizes, specifically a fraction of the maximum
possible clutter measurement M that would be in-
curred if they completely overlapped: f(0) = αMγ ,
where α denotes the fraction, and 0 < α < 1. For
example, for the smallest node pair v1, v2, the maxi-
mum overlap Mv1,v2 = 1, and thus 0 < fNNv1,v2(0) =
α < 1, which is compatible with the requirements of
a substantial touching penalty (R2) and calibration
to count (R3). In a layout with variable node sizes,
M would be different for node pairs of different
sizes, resulting in a larger touching penalty for large
pairs and a smaller touching penalty for small pairs,
so the local function requirement is also met (R4).
The touching penalty could be greater than one for
sufficiently large nodes. Similarly, the same amount
of overlap area or length (x) will have a bigger

impact (f(x)) if it happens on bigger nodes than
smaller nodes.

C3) We choose a maximum penalty proportional to
the node sizes, with M as above: f(M) = βMγ ,
where β denotes the proportion, and β > 1. For
the same example as above where M = 1, R3 and
R4 compatibility also holds, and f(M) = β > 1.
Meanwhile, as β > 1 > α, the maximum penalty is
guaranteed to be greater than the minimum penalty;
combined with the choice of a power function (C1),
f(x) is an increasing penalty (R1).

C4) We choose to set the halfway point of measured
clutter for the smallest pair to a penalty of 1:
fNNv1,v2(0.5) = 1, fNEv,e (0.5) = 1, fEEG (π/4) = 1;
where v1, v2 is the smallest node pair so Mv1,v2 =
min{area(v1), area(v2)} = 1, and v, e is the small-
est node-edge pair so Mv,e = 1. Note that the
flat line for count-based metrics lies exactly in the
middle of minimum and maximum penalty when
γ = 1, as shown in the left function in Fig. 4, but this
statement does not hold when γ 6= 1. This choice is a
specific way of calibrating penalties to counts (R3).
It also constrains the relationship between α and
β so that only one parameter needs to be defined,
improving the simplicity of the function.

x: overlapping area 

of              (smallest pair)

f(x): penalty

0

1

0.5

count-based

area-aware
γ = 1

x

f(x)

0 10.5

1
γ > 1 0

x

f(x)

0 10.5

1
1 0 < γ < 1 (8)

Fig. 4. Illustration of the penalty mapping function for node-node overlap
of a pair of the smallest nodes (Mv1,v2 = 1) in the graph layout. The
three functions show three different choices of curve shape (γ).

4.3 Formal function instantiations

Combining the general requirements and our specific
choices, we can define the penalty mapping function in a
general form:

f(x) = (β − α)xγ + αMγ (0 ≤ x ≤M) (3)

This general form comes with three parameters, α, β,
and γ, which are responsible for minimum penalty, maxi-
mum penalty, and curve shape respectively. Our choice of γ
values was guided by empirical results from previous work
[21], [39], as discussed in C1 above. With the halfway point
choice (C4), i.e. f(half) = 1, we are able to remove β from
the general form. We can also constrain α using the choices
for minimum (C2) and maximum (C3).
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(NN) β = (1− 1

.5.7
)α+

1

.5.7
≈ 1.625− .625α (0<α<1)

(NE) β = 2− α (0<α<1) (4)

(EE) β =
16

π2
− 3α (0<α< 16−2π

3π2 ≈.328)

Inserting the known parameters β and γ, we obtain the
specific instantiations of penalty mapping function for NN,
NE, and EE.

fNNv1,v2(x) = (1− α)(2x)0.7 + αM0.7
v1,v2 (0≤x≤Mv1,v2 ) (5)

fNEv,e (x) = 2(1− α)x+ αMv,e (0≤x≤Mv,e) (6)

fEEG (x) = (
16

π2
− 4α)x2 + α

π2

4
(0≤x≤π2 ) (7)

4.4 Parameter space analysis
We conducted a mathematical analysis to understand the
influence of the unspecified parameter in the formal state-
ment above, namely, the minimum penalty fraction α. In
addition to the theoretical analysis presented in this section,
in Supp. Sect. S1.1.2 we report on a computational analysis
that allows us to suggest practical choices for values.

We only report on the analysis of α in the NN penalty
mapping function, since α for NE and EE functions is very
similar. Fig. 5 shows the NN penalty mapping function for
the smallest node pair (Mv1,v2 = 1), using 6 different α
values within the range (0, 1): 0.01, 0.2, 0.4, 0.6, 0.8, 0.99.
We also include the function plot for a node pair that is 10x
larger (Mv1,v2 = 10) in Supp. Fig. S1, where the shapes and
relationships between curves remain the same except that
the x and y values are 10x larger.

Fig. 5. The node-node overlap penalty mapping function of the smallest
node pair (M = 1), with different minimum penalty fraction (α) values.
The α controls the minimum penalty (y-intercept) as well as the differ-
ence between maximum and minimum (function range).

First, we observe that as α increases from 0 to 1, the
range of f(x) decreases, and when α takes the extreme value
0.99, f(x) is approximately a flat line, degenerating to the
count-based metrics case. Mathematically, the range of the
penalty mapping function is f(M) − f(0) = (β − α)Mγ =
(1−α)(2M)0.7. Semantically, the range represents its ability
to distinguish between minimum, some, and maximum
overlap. This ability has negative correlation with α accord-
ing to both our observation in Fig. 5 and the mathematical
representation above. Second, we observe that as α increases
from 0 to 1, the touching penalty f(0) (i.e. the y-intercept
of the curves) also increases from 0 to 1 in Fig. 5. Mathe-
matically, the touching penalty is f(0) = αMγ = αM0.7.
Semantically, the touching penalty represents its ability to

distinguish no overlap from minimum overlap, which has
positive correlation with α. Third, the changes of the range
and minimum of the function is linear to the change of α.

Therefore, α is the trade-off between the ability to dis-
tinguish different amounts of overlap and the ability to
distinguish no overlap from touching.

5 DATA GENERATION

To validate the sprawlter metrics, we created small synthetic
graphs with both manual and force-directed layouts, and
applied four different layout algorithms to large real-world
graphs, resulting in 56 layouts in total: 38 synthetic and 18
real-world layouts.

We created 9 small synthetic graphs, with under 50
nodes and 150 edges. We either manually positioned the
nodes or applied off-the-shelf force-directed layout algo-
rithms in Tulip [40] to make 38 layouts for five targeted pur-
poses: problem demonstration, debugging and sanity check,
progression of clutter, variable sprawl, and limitations of
our metrics. We varied the amount of clutter between NN,
NE, and EE pairs, and the overall layout sparsity by pushing
nodes away from each other or shrinking node sizes.

To confirm that the sprawlter metrics work with large
real-world graph layouts, we used 4 large real-world graphs
with 100-5K nodes and 500-10K edges. These are an aca-
demic coauthor network benchmarked in the Koala layout
algorithm paper [41], a different coauthor network from the
InfoVis 2004 contest [42] benchmarked in the GrouseFlocks
layout paper [43], an email network provided by Leskovec
et al. [44], and the add32 benchmark graph from the graph
partitioning archive [45]. Supp. Table S3 provides a complete
list. We applied the following layout algorithms to the
real-world graphs: two single-level layouts available within
Tulip [40], namely GEM [29] and FME [46] (the single-level
version of FM3 [47]), the two-level Koala layout designed
to emphasize cluster structure [41], and the GrouseFlocks
multi-level layout [43]. We chose these based on implemen-
tation availability, computation speed, and ability to handle
multi-level structure.

Our full computational pipeline is documented in de-
tail in Supp. Sect. S5. In brief, we convert a variety of
input graphs into the Tulip format, apply layout algorithms,
extract geometries and the node hierarchy, compute the
metrics, and finally display and analyze results for compar-
ison. Except for applying the layout algorithms, our code
is written in Python. In the supplemental materials, we
include all input files, output files, implementation code,
and Python scripts for results analysis. We will release these
materials as open source upon acceptance.

6 RESULTS

We conduct a comparative analysis between the sprawl-
ter metrics, count-based metrics, and two from Dunne et
al. [11], with respect to qualitative assessment of layout
pictures. We report on the analysis approach, and then
discuss instructive examples across all three of the NN, NE,
and EE families. For computational time, we show that our



1077-2626 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2970523, IEEE
Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUASLIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXX 2020 8

approach only costs a constant additional time to the count-
based approach. Finally, we present the computational pa-
rameter analysis for the penalty mapping functions, guided
by the theoretical analysis in Sect. 4.4.

A large table with pictures and metric values for all
56 layouts and a table of running times is available in the
supplemental materials.

6.1 Analysis approach
We compute the area-aware clutter penalties (A), sprawl
(S), sprawlter (T ), and counts (C) for each graph layout, in
order to validate them separately. We also derive the average
penalty A/C, the ratio between the penalties and counts, to
help us find representative cases. When the average penalty
is below one (A/C < 1), the overlap areas, lengths or cross-
ing angles are less cluttered than the count suggests, which
is typically caused by overlapping between small nodes and
edges, near-touching overlaps, or near-orthogonal crossings.
When the average penalty is above one (A/C > 1), the
overlaps are more cluttered than the count suggests, which
is typically caused by overlapping between big nodes and
edges, nearly full overlaps, or glancing angle crossings.

We also compute the two most relevant metrics proposed
by Dunne et al. [11] (denoted by D), the global node-node
overlap and the global crossing angle. The node-node over-
lap metric is the ratio of the area of the union of the node
representations over their total area if drawn independently
(perceived readability over best readability). A point not
discussed explicitly in their paper is that this union formula
assumes nodes are at the same level. It is not obvious
how to extend it to multi-level layouts, since the union
of parent metanodes and their constituent children would
be an over-count. We thus compute it only on leaf nodes.
The edge-edge crossing angle metric computes deviations
from a specific optimal angle, a parameter that they set
to 70◦ according to the empirical study from Huang et
al. [21]. Although Dunne et al. also propose a group overlap
metric that involves metanodes, it only counts the crossings
between metanodes and leaf nodes, but not between metan-
odes, so we do not compute it.

We compare the five computational results
(A,S, T, C,D) to the layout pictures, and make a subjective
qualitative assessment of correspondence between the
metrics and quality of layout. For the first four metrics,
low numbers are good and high numbers are bad. For D, 0
means the worst and 1 the best.

6.2 Comparative analysis
We present several representative cases in different types of
graphs and layout algorithms, and discuss how the tested
metrics reflect the readability of these cases. (We use α =
0.20 for NN, NE, and EE in this section.)

6.2.1 Node-node overlap
Increasing metanode overlaps (synthetic). Fig. 6 shows
a small synthetic graph layout with increasing overlap
between the red and blue metanodes (from left to right).
The area-aware metrics for NN (ANN ) also increase (4.27 <
14.36 < 30.62), but the counts (CNN ) do not (1 = 1 < 12)
and neither does Dunne’s NN metric (1.00 = 1.00 > 0.90).

Looking closer at the breakdown by metanodes and nodes,
the penalties of metanodes (4.27, 14.36, 22.05), compared to
penalties of leaf nodes (0, 0, 11), are the major contribution
towards the totals, which matches our intuition that big
metanode overlap should be penalized more heavily than
that of leaf nodes, whereas the breakdown of counts does
not match this intuition.

Node-node overlap

Near-min Some Near-max

A 4.27+0= 4.27 14.36+0= 14.36 22.05+8.57= 30.62
C 1+0= 1 1+0= 1 1+11= 12
D 1.00 1.00 0.90

Fig. 6. Increasing overlap between red and blue metanodes in a small 2-
level synthetic graph. Only closeups for the overlaps are shown.A andC
are broken down by penalties / count of metanodes and leaf nodes. The
area-aware approach (A) matches with the visible configuration better
than count-based (C) and Dunne’s (D) approach.

Force-directed layouts for variable-size nodes (syn-
thetic) Fig. 7 shows a single-level graph using two force
directed layout algorithms, namely Davidson-Harel [48] and
stress majorization [30]. The nodes have variable node sizes,
as can occur either where node size is mapped to some
quantitative attribute, or where variable-length labels is
drawn within the node extent. We can see that there are
no overlaps in the right layout and a few overlaps between
large nodes in the left layout (16.05 > 0), but the right one is
much more sparse (1605.28 >> 6.09). Overall, the left has
better readability (9.95 < 40.07), because its partial overlaps
are less problematic than the tiny size of the nodes on the
right, with uninterpretable size coding. The difference of
Dunne’s metrics between left and right do not suffice to
signal the large node overlaps in the left, nor they address
the sparsity problem in the left.

Many touching leaf node pairs and high sprawl (real-
world). Fig. 8 shows a large real-world graph from the
partition benchmark dataset, with 4960 nodes and 9462
edges, using FM3 layout (single level). The most noticeable
feature about this layout is that the nodes are too tiny to be
seen and there is huge wasted space on the upper left and
bottom right, resulting in a large sprawl (319.28). Despite
the many touching overlaps between the tiny leaf nodes, as
shown in the inset on the upper left, the area-aware penalty
is still less than count (213.28 < 670), showing that the
penalties for these small overlaps sum to an appropriate
amount that is non-zero but not disproportionate. Dunne’s
metric (almost 1.00) does not reflect the wasted space or the
touching overlaps.

High vs low sprawl (real-world). Fig. 9 shows an email
network layout by GrouseFlocks, with only a few metan-
odes open and others closed. There are only 61 nodes and
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Node-node overlap and sprawl

Davidson-Harel Stress majorization

A 16.25 0
C 6 0
S 6.09 1,605.28
T 9.95 40.07
D 0.91 1.00

Fig. 7. A single-level synthetic graph with variable node sizes. The left
layout has a lower sprawlter metric than the right layout although there
are substantial overlaps between nodes; we argue that qualitatively the
readability is indeed better.

Node-node overlap and sprawl

A 213.28
C 670

A/C 0.32
S 319.28
T 260.95
D 0.99

Fig. 8. Large real-world graph layout by FM3 in Tulip (single-level), with
high sprawl and many touching events. The average penalty (A/C)
indicates penalties for overlaps are small but non-zero, and the high
sprawlter value (T ) indicates that this layout is bad in terms of sprawl
(S) and clutter (A).

more than 1000 edges in the left layout, and 88 nodes and
more than 2000 edges in the right layout. As the overlaps
only happen between metanodes, Dunne’s metric (1.00) is
not helpful. The left layout is less cluttered than the right one
in terms of both area-aware penalties (133.52 < 184.13) and
counts (16 < 40), but the left is less efficient in space usage
than the right (i.e. higher sprawl, 947.59 > 219.59), resulting
in a higher sprawlter (335.71 > 201.08). This example and
the previous one suggest that both clutter and sprawl are
important aspects of measuring graph layout quality, and
the trade-off between the two should be considered.

6.2.2 Node-edge overlap
Increasing metanode and edge overlaps (synthetic). Fig. 10
shows a progression of node-edge overlap on a small syn-
thetic layout. Both the area-aware metrics (12.11 < 54.46 <
136.72) and counts (6 < 15 < 36) are increasing to in-

Node-node overlap and sprawl

A 133.52 184.13
C 16 40
S 947.59 219.59
T 355.71 201.08
D 1.00 1.00

Fig. 9. Two large multi-level real-world graph layouts by GrouseFlocks
(4-level). The left layout has higher sprawl but less overlap than the right
one, captured by the sprawl S, and clutter with area-aware approach (A)
and count-based one (C).

dicate the increasing overlap between the blue metanode
and edges, and also the constituent leaf nodes and edges,
but the increasing average penalty (2.02 < 3.63 < 3.80)
indicates that the penalty increases at a faster pace. As
in the analysis of Fig. 6, the breakdown of penalties by
metanodes and leaf nodes shows that overlap of metanodes
and edges contributes more than that of the leaf nodes.
The area-aware metric better aligns with our judgement of
the layout pictures, because the clutter between nodes and
edges deteriorates as the blue metanode moves upwards.

Node-edge overlap

Near-min Some Near-max

A 5+7= 12.11 40+15= 54.46 98+39= 136.72
C 1+5= 6 5+10= 15 8+28= 36

A/C 2.02 3.63 3.80

Fig. 10. Increasing overlap between blue metanodes and edges in a
small 2-level synthetic graph. Although counts (C) are increasing, the
area-aware approach (A) captures the deteriorating situation in the
picture more precisely, visible via the increasing ratio of average penalty
(A/C).

Increasing metanode and edge overlaps (real-world).
Fig. 11 shows the comparison between area-aware metrics
and count-based metrics on a real-world example. On the
left layout, all leaf nodes are hidden; on the right layout,
we open up two of the orange metanodes, making it more
cluttered. For the node-edge overlap, there are significantly
fewer overlaps on the left layout, which is reflected by both
metrics (4482.20 < 32618.75, 539 < 1650), and by the
average penalty (8.32 < 19.77). Notice that there are many
edges that fully cross the biggest green metanode on the
right layout, resulting in an extremely high average penalty.
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Also, the fact that A >> C for both layouts matches our
intuition that overlaps related to big metanodes are visually
salient and should be penalized heavily.

NE
A 4,482.20 32,618.75
C 539 1650

A/C 8.32 19.77

EE

A 703.67 5,936.89
C 808 4,154

A/C 0.87 1.43
D 0.73 0.46

Fig. 11. Two large multi-level real-world graph layouts by GrouseFlocks
(4-level). The area-aware NE metric (ANE ) captures the property that
there is less node-edge overlap on the left than the right. The area-
aware EE metric (AEE ) captures that on the left the crossing angles
between edges are closer to orthogonal angles, while on the right they
are closer to glancing angles.

6.2.3 Edge-edge crossing

Decreasing crossing angles (synthetic). Fig. 12 shows a
progression of decreasing angles between crossing edges
on a small single-level synthetic graph, from orthogonal to
near-glancing angles. There are exactly two edge-edge cross-
ings on each layout, but the area-aware metric is increasing
(0.99 < 1.46 < 3.45 < 4.42). In two layouts on the right,
the edges are almost on top of each other, which looks a
lot worse than the two layouts on the left. The count does
not indicate such clutter on this naive example, whereas the
area-aware metric is a better match to the degree of clutter
of the edge-edge crossings. Dunne’s metric also goes down
as clutter increases (0.73, 0.87 > 0.28 > 0.10) (least clutter
is reached at 70◦), but reports near-maximum EE readabil-
ity in the orthogonal case which ignores the existence of
remaining edge-edge crossings.

Edge-edge crossing

Orthogonal Near-half Small Near-glancing

A 0.99 1.46 3.45 4.42
C 2 2 2 2
D 0.73 0.87 0.28 0.10

Fig. 12. Decreasing crossing angles between edges in a small single-
level synthetic graph, captured by the area-aware EE metric (A).

Orthogonal vs glancing angles (real-world). Fig. 11
shows similar results on real-world examples. From the
layout pictures, we can see that the edge-edge crossings on
the left layout are mostly near-orthogonal, while those on
the right layout are mostly small and even near-glancing

angles. Not only are there fewer edge-edge crossings on the
left (808 < 4154), but the clutter caused by crossing angles
is also less, which is reflected by the average penalties for
EE (0.87 < 1.43). In this case, Dunne’s metric (0.73 > 0.46)
is also successful in differentiating the two layouts.

6.3 Computational time

As we see from Alg. 1, the sprawlter metrics are computed
along with the counts with a computational complexity
linear to the number of NN, NE, and EE pairs. Therefore, we
expect that the computation of the sprawlter metrics would
be in the same scale as that of the count-based metrics, with
a constant factor slowdown.

For every graph layout measured, we timed the full
computation of the sprawlter metrics, and also of the count-
based metrics by skipping the code only relevant to sprawl-
ter metrics; that is, operations within the inner condition in
Alg. 1 are all skipped except the the one that increments
count (line #10). We used a 2012 MacBook Pro with a 2.5
GHz Intel Core i5 CPU and 8GB RAM to run all compu-
tations, and report the average computational times over 4
runs. The absolute running time is related to the number
of nodes and edges, and also the number of crossings. For
example, for a large real-world graph with about 5k nodes
and 10k edges (Fig. 8), it takes 128s, 505s, and 510s to
compute the NN, NE, and EE sprawlter metrics respectively,
while it takes 92s, 358s, and 372s to compute the counts.

We then compared the two execution times by deriving
the ratio between running time of sprawlter metrics and
counts, which is the equivalent of the slowdown factor. We
excluded execution times under 1 second as unreliable esti-
mates. The results align with our expectation. The average
ratio over all included layouts is 1.38 for NN, 1.50 for NE,
and 1.85 for EE, with relatively small standard deviations.
Our findings suggest that the slowdown factor is a constant,
which ranges from roughly 1 to 3.

Our Python implementation of the sprawlter metrics
serves adequately as a proof-of-concept, but there are obvi-
ous directions for optimization. Our naive algorithm simply
iterates every pair of nodes (and edges in NE and EE case). It
would be possible to apply space decomposition algorithms
to speed up the computation, such as the Bentley-Ottmann
line sweeping algorithm [49] to compute all crossing edges.

7 DISCUSSION AND FUTURE WORK

Overall, the area-aware approach clearly outperforms the
simple count-based approach in the NN, NE, and EE cases,
and also the Dunne approach for the NN case. Our results
are somewhat better than Dunne’s EE case: more edges does
imply more crossings, but not necessarily worse crossing an-
gles. The area-aware approach is more complicated than the
others due to a parameterized penalty mapping function;
we argue that benefit of precision is worth this cost.

Our approach does not impose an upper bound for the
metrics, in contrast to Dunne’s metrics that are within [0, 1].
Their metrics are essentially ratios of the current readability
and the best achievable readability, where 1 corresponds to
the most readable and 0 to the least readable. In particular,
they propose normalizing the EE metric by theO(|V |2) term
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of all possible edge crossings in a complete graph, but this
number is misleading because the density levels of node-
link graph drawings must be far below that ceiling in order
to be comprehensible; Melancon [50] argues that typically
|E| < 4|V |. While having a fixed bound is beneficial in
comparing the same graph with different layouts, it is not
for comparing different graphs because their metrics is a
ratio relative to the graph itself, comparing the perceived
readability against the best it could have; therefore the same
number would have a very different meaning for a small
and simple graph than for a large and complex graph.

We argue for the necessity of clutter metrics despite the
existence of clutter removal algorithms [51]. The entire
point of our area-aware clutter metrics is to more precisely
quantify the clutter that results from overlap. It could be
used algorithmically to determine which layout algorithm to
use for a particular graph; for example, whether the compu-
tational cost of overlap removal is worth the improvement
in the layout quality. Moreover, overlap removal sometimes
results in an increase of sprawl (especially for large graphs),
so the trade-off between sprawl and clutter can help deter-
mine to what extent we want to remove overlap completely,
partially, or just leave it. Moreover, many layout algorithms
used in practice do not guarantee the total elimination of all
overlaps; their approach to accelerating computation may
leave some in place. We would like to see these new metrics
incorporated into layout algorithms, which would be easy
to do with optimization-based approaches.

One limitation of the sprawlter metric is that only clutter
and sprawl are captured. Other readability factors that affect
the overall quality of a layout include its ability to show
cluster structure; using spatial proximity to show groupings
may incur clutter costs as a direct trade-off, as in the Koala
layouts (shown in the supplemental table of full results).

Our general area-aware approach could be extended
to cover a wider range of metric families as future work.
Another interesting direction of future work would be a
resolution-aware approach. In the mathematical formulas,
pixels can be divided into infinitely small sub-pixels. If two
nodes just touch each other, the overlapping area is exactly
zero. However, in the practical world, pixels on a screen
are discrete. An explicit awareness of the display resolution
would provide the precision required to exactly assess when
there is no longer visible space between two items because
they occupy neighboring pixels.

A very rich direction for future work would be to
incorporate more aspects of multi-level structure by con-
sidering metaedges. Progress may not occur until more
layout algorithms support them and more psychophysical
experimentation has taken place to untangle the factors that
affect edge-edge crossing clutter beyond the crossing angle.

8 CONCLUSION

We contribute the area-aware sprawlter metric for graph
layout to capture important properties beyond integer
counts of crossings on the leaf level by accounting for
the amount of overlap and beyond clutter by accounting
for the geometric sparseness of layout. We instantiate and
implement the sprawlter metric, and present the technical
details for the crucial component, the penalty mapping

function. Through our validation with synthetic and real-
world layouts, we show that the new metric succeeds at
providing a better quality measure than previous work by
taking into account both clutter and sprawl.
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