
1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2898186, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXX XXX 1

Aggregated Dendrograms for Visual
Comparison Between Many Phylogenetic Trees

Zipeng Liu, Shing Hei Zhan, and Tamara Munzner Senior Member, IEEE

Abstract—We address the visual comparison of multiple phylogenetic trees that arises in evolutionary biology, specifically between
one reference tree and a collection of dozens to hundreds of other trees. We abstract the domain questions of phylogenetic tree
comparison as tasks to look for supporting or conflicting evidence for hypotheses that requires inspection of both topological structure
and attribute values at different levels of detail in the tree collection. We introduce the new visual encoding idiom of aggregated
dendrograms to concisely summarize the topological relationships between interactively chosen focal subtrees according to biologically
meaningful criteria, and provide a layout algorithm that automatically adapts to the available screen space. We design and implement
the ADView system, which represents trees at multiple levels of detail across multiple views: the entire collection, a subset of trees, an
individual tree, specific subtrees of interest, and the individual branch level. We benchmark the algorithms developed for ADView,
compare its information density to previous work, and demonstrate its utility for quickly gathering evidence about biological hypotheses
through usage scenarios with data from recently published phylogenetic analysis and case studies of expert use with real-world data,
drawn from a summative interview study.

Index Terms—Tree comparison, phylogenetic trees, level of detail.
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1 INTRODUCTION

B IOLOGISTS who study phylogeny, which aims to resolve
evolutionary relationships among all living and extinct

organisms, often find it difficult to make sense of large col-
lections of phylogenetic trees. These evolutionary trees are
typically computationally inferred from living organisms.
The ability to gather genetic data quickly and cheaply has
led researchers to generate and analyze more and larger
trees [1], including intermediate trees that arise within a
computational pipeline for reconstructing a final tree. They
frequently need to inspect these trees to consider their
plausibility and meaning with respect to existing domain
knowledge. They do not blindly trust automatic compu-
tational metrics, especially when dealing with unknown
genes and species or when developing new concepts and
methods. Current visual analysis tools fall short of their
need to make comparisons between large number of trees
at multiple levels of detail.

In the visualization community, visual comparison of
trees has been studied for years [2], but existing visualiza-
tion techniques do not scale to the current needs of phylo-
genetic researchers. We characterize scalability of visual tree
comparison in terms of three factors: the number of nodes
per tree, the number of trees being compared, and level of
detail at which the internal structure needs to be shown.
Different tasks require very different levels of detail. These
factors have separable requirements with respect to screen
real estate and human cognitive ability: techniques that are
suitable for scaling up in one of these may not support
the others. For example, a technique for inspecting clusters
made of hundreds of trees does not typically support fine-
grained inspection at the subtree level within each one. Most
scalable visual tree comparison work has been in support
of comparison between a very small number of large trees.
Approaches such as TreeJuxtaposer [3] are able to show
highly detailed local structure, such as all descendants of a

specific subtree. A few systems tackle the inverse problem of
handling a large number of trees, where each tree is shown
as a single point [4]. In this case, where a global distance
measure is used to lay out those points, the available level
of detail is an overview of the entire collection of trees.
Between the two extremes, there is some work comparing
dozens of trees at varying levels of detail, in many domains
ranging from phylogenetic trees [5] to natural language
processing [6].

Modern phylogenetic research takes place at a variety
of scales: the number of trees can range from one to over
ten thousand trees, and the number of nodes per tree
ranges from a dozen to millions. The visual comparison of
phylogenetic trees also encompasses a broad and complex
spectrum of tasks. The research questions can range from
assessing the overall uniformity or variance across a large
collection of trees, to the exact placement of a particular leaf
node across a small set of trees. Questions may pertain only
to topological relationships between or within subtrees, or
only to the distribution of attributes associated with nodes
or branches, or to the combination of both. The problem
space is huge; we worked with a group of phylogenetic
researchers to understand their specific unmet needs.

We present ADView, an interactive system to visually
compare one tree against hundreds of other trees, show-
ing multiple levels of detail across multiple linked views.
We propose an innovative technique to compress a tree
into a concise representation that we call an aggregated
dendrogram (AD), which captures the major topological
relationships between several subtrees that are the focus of
user interest. Our best-effort layout algorithm yields an AD
that can adapt its size and the amount of presented infor-
mation according to the available screen space. We cluster
similar ADs to generate a visual summary of topological
relationships between chosen subtrees that reveals informa-
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tion across multiple scales for datasets of hundreds of trees,
enabling more detailed comparison than previous tools can
achieve. ADView also includes a view showing distributions
of trees in terms of their agreement and conflicts of leaf
memberships for the chosen subtrees. It has an on-demand
view for pairwise comparison in full detail, and auxiliary
views for attribute values and other information. We show
the results of using ADView on real-world datasets, includ-
ing usage scenarios based on published datasets and case
studies arising from an interview study with five domain
experts.

In summary, the contributions of this paper are:

• task and data abstractions for the comparison of
phylogenetic trees;

• an interactive visual tool to compare one phyloge-
netic tree against a collection of hundreds of other
trees using multiple linked views;

• a technique to compress a dendrogram into a
small resolution-aware visual representation show-
ing topological relationships between subtrees of in-
terest;

• validation through algorithm benchmarks, usage sce-
narios, formative expert feedback, and a summative
expert interview study that provided case studies.

2 RELATED WORK

We discuss the visual representation of trees in general, in
the biology domain, the many approaches to tree compari-
son, and task abstractions for trees and networks.

2.1 General tree visualization

Tree comparison falls within the very active research area of
general tree visualization. The treevis survey by Schulz [7]
enumerates hundreds of general techniques to visualize
single trees, but they do not suffice for our chosen problem
of tree comparison, which is more complex than displaying
one tree [8]. The space efficiency of many tree represen-
tations is studied by McGuffin and Robert [9]. We were
inspired by their efforts when designing the aggregated
dendrogram. Previous approaches to the compression and
simplification of general trees and graphs according to their
statistical properties [10], [11] do not suffice to support
our targeted tasks for phylogenetic analysis such as pre-
serving monophyletic groups. The DOITrees approach [12]
dramatically simplifies trees and like ours is a focus+context
technique that uses elision rather than distortion, but does
not support these targeted phylogenetic analysis tasks. Pre-
torius et al. [13] propose a visual encoding for cell lineage
visualization, but it is focused on different requirements
such as emphasizing symmetry.

2.2 Biological tree visualization

Biologists routinely use domain-specific tools such as
FigTree [14], iTOL [15] and Dendroscope [16] to visual-
ize and annotate a tree during analysis, and to generate
publication-ready figures, but these tools do not support
comparison at all. Biologists who are capable of program-
ming could use Python or R libraries such as DendroPy [17]

and Ape [18]. These libraries are handy for flexible data ma-
nipulation such as trimming and computing an additional
attribute, but fall far short of the kinds of visual comparison
that ADView provides.

2.3 Visual tree comparison

Fig. 1. The problem space of visual tree comparison for two scalability
dimensions.

We categorize previous literature related to visual tree
comparison by three dimensions of scalability: the number
of trees, the level of detail at which the data must be shown
to accomplish the intended task, and the number of nodes
per tree. Fig. 1 illustrates the first two dimensions of this
problem space. The vertical axis shows the number of trees
partitioned into four categories: pairs, dozens, hundreds,
and thousands. The horizontal axis shows the level of detail
representing how many levels of detail a tool can show,
in terms of three rough groups: a single point, simplified
structure, and the full topology. We identify three major
groupings: Few in Full, Dozens at Multi-Scale, and Many as
Points.

The Few in Full category has been heavily studied. An
extensive list of these systems appears the survey by Gra-
ham and Kennedy [2], and all of the entries in the InfoVis
2003 Contest on tree comparison fall into this category [19].
With only a small number of trees to handle, often just two,
the most scalable previous systems can deal with a massive
number of nodes per tree. For example, the TreeJuxtaposer
system [3] supports detailed structural comparison of large
trees up to several hundred thousand nodes. A similar
system was recently re-implemented by Phylo.io as a web-
based tool [20]. Some propose superposition to stack trees
visually, such as the color coding of CandidTree [21] and
the explicit encoding of Beck et al. [22]. Several systems
proposed drawing lines connecting the same nodes on two
trees [23], [24], [25]. Tree comparison is a special case of the
more general problem of graph comparison. For example,
Archambault proposes a pairwise comparison approach of
hierarchically coarsening difference graphs [26]. These ap-
proaches by definition do not handle the larger collections
of trees that we focus on in this work.

At the other end of the spectrum, the Many as Points
systems handle hundreds or thousands of trees, with no
limits on the number of nodes per tree. As our group
name suggests, each tree is represented by a single point
and thus these systems provide only a high-level overview
of relationships between trees according to some kind of
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similarity metric. Hillis et al. employ dimensionality reduc-
tion to map trees to a 2D space [4], revealing only cluster
structure. Strimmer et al. propose Likelihood Mapping to
visualize likelihoods for different hypotheses within a tri-
angular coordinate system [27], but this tool is tailored for
testing hypothesized relationships between four sequences
or species families, and does not address more general
problems. Fangerau et al. [28] compute a signature value for
each tree and arrange them along a Hilbert curve to show
structurally similar trees, and Hess et al. [29] cluster trees
into a hierarchy to make sense of different parameter set-
tings used in tree generation. The general idea of reducing
complex structure to points is also applied to dynamic graph
visualization by van den Elzen et al. [30]. These approaches
cannot show the multiple levels of detail required for our
target tasks.

The Dozens at Multi-Scale category comprises systems
that handle from 2 to roughly 100 moderately-sized trees
of around 100 nodes per tree, where at least two levels of
detail are provided. Graham et al. propose a multi-view
system for showing trees in different levels of detail using
treemaps, node-link diagrams and lists [31], but they handle
fewer trees than ADView and only a subset of tasks in Sec. 4.
In DAViewer [6], Zhao et al. propose a compact view to
aggregate information along two directions: from root to
leaves, and for nodes across the same tree depth. Although it
addresses questions about distributions and errors, it is not
suitable for comparing topological structures at the subtree
level and their choice of dendrogram does not scale to
collections of hundreds of trees. PhenoBlock [32] uses small
multiples to visualize many patient phenotypes compared
to a single reference tree. Their solution takes advantage of
the fact that phenotype ontology is fixed across all trees, so
it would not work for the dynamic situations we present in
Sec. 4. TreeVersity2 [33] embeds bar charts in trees to visu-
alize changes of attribute values on nodes, while Vehlow et
al. [34] and Bach et al. [35] deal with temporal changes of
trees over time. All three of these systems support different
data abstraction than ADView.

Consensus trees [36] are traditionally used by biologists
to reason about collections of trees, where the places of
agreement are shown as a standard tree and the disagree-
ments are indicated by collapsing multiple leaves together
under a single parent. Although they can be effective to
pinpoint sparse disagreement in only a few areas, when
substantial differences exist within a large collection of trees
this simple approach breaks down. The summary graph of
multiple domain specific graphs [37] proposed by Koop
et al. has a similar limitation. DensiTree2 [38] uses half-
transparent fuzzy branches to imply uncertainty in regions
of difference, but this visual encoding shares the limitations
of conventional consensus trees: fine-grained comparison is
impossible when there is too much variation.

The previous work from Bremm et al. [5] is the most sim-
ilar to ADView. They compare multiple phylogenetic trees
at both global and local scales via topological summaries,
for dozens of trees with dozens of leaves per tree. They also
propose a new distance measure to capture structural differ-
ences between subtrees. Their approach for reducing visual
complexity of trees is to retain the full path from a selected
node all the way up to the root and hide the others. In con-

trast, our aggregated dendrogram method for simplifying
trees, which preserves focal subtrees and carefully chosen
local context while hiding more distant upstream nodes,
is more compact and scalable. Moreover, our simplification
approach can automatically adapt to available screen space.
We present a detailed comparison of our results to theirs
in Sec. 8.2, showing their limitations in handling for our
identified tasks. In addition, they require all species under
study to be present in all trees; in contrast, ADView can
handle missing species, a situation faced by our domain
experts that commonly occurs in phylogenetic analysis.

2.4 Task abstractions for trees

Gleicher offers some structural thoughts on the general task
of visualizing comparisons [8]. The three papers devoted to
task abstractions for networks only cover a subset of the
tasks that we present in Sec. 4. Lee et al. [39], Pretorius et
al. [40] and Kerracher et al. [41] cover tasks such as lookup
by name, finding attribute ranges, and general questions
about topology inspection. However, they do not address
tasks such as finding corresponding branches or conflicting
taxa across a tree collection, much less the questions very
specific to phylogeny such as understanding monophyletic
groups. Several previous papers that propose techniques for
phylogenetic tree comparison do present abstractions for
more specialized tasks, but none cover all seven of the tasks
that we propose and none explicitly identify all five of the
relevant levels of detail that we characterize in the data.

3 PHYLOGENETIC TREE DATA

We introduce some basic domain terms that pertain to phy-
logenetic tree data and present an abstract data specification.

3.1 Phylogenetic tree

A phylogenetic tree describes the evolutionary history of
living organisms. Leaf nodes are called taxa, and are extant
species that are being studied. Internal nodes represent
common ancestors, usually inferred by statistical methods
of phylogenetic reconstruction. Tree collections may arise
from multiple reconstruction computations with different
parameters or assumptions. A subtree is composed of all
descendants beneath a branch; the set of all taxa underneath
a specific branch forms a monophyletic group, also called
a clade. There is a 1-to-1 correspondence between a branch,
an interior node, a subtree, and a monophyletic group.

Tree collections also arise when inferring gene trees that
represent the different evolutionary histories of individual
genes; the synthesis of these multiple histories into a sin-
gle overarching species tree requires extensive comparison
between these trees.

3.2 Data abstraction

Phylogenetic researchers conduct comparison with respect
to a single special tree that can be interpreted as their main
hypothesis, where they are looking for evidence to support
or invalidate the hypothesis from a collection of other trees.
We denote the special hypothesized tree as the reference
tree and the other trees as the tree collection. Both are
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required as input data for ADView. Two typical scenarios
are either one species tree vs. its associated gene trees, or one
species tree vs. multiple species trees generated by different
methods or parameters. The leaf nodes in these trees come
with names, but internal nodes are usually not labeled.

Each tree branch has three attributes, two original and
one derived. The primary original attribute is a support
value associated with the branch, which is generated as an
(un)certainty measure of how confident the reconstruction
program is in its decision that the underlying leaf nodes
should be grouped together. Each branch also has the sec-
ondary original attribute of branch length, which measures
a distance from its ancestors related to evolutionary time.
Although none of our target tasks directly rely on branch
length, these lengths can provide useful context for biolo-
gists and are also sometimes used for sanity checking the
data.

While the entire group of these trees has substantial
overlap in the set of taxa, in many datasets an individual tree
will have missing taxa. For example, in a collection of trees
about the evolution of animals, some trees might not have
kangaroos while others might not have turtles. We assume
that trees are all rooted and binary. We also assume that
every leaf node is unique in a tree; in biological language,
that there are no paralogs.

Fig. 2. Task Illustrations. (a) Three topological relationships among
subtrees A, B, and C: A and C are separated, A and C are sisters, A is
nested beneath C. (b) Tree1 agrees and Tree2 disagrees with Reference
on the monophyletic taxa group (leaf set) under branch A. Reference
tree branch A has the corresponding branches A1 and A2 in Tree1 and
Tree2 respectively.

Many of the tasks presented in Sec. 4 require the derived
data of corresponding branches: for a specific branch in
the reference tree, we must find its counterpart of the
most similar branch in each tree of the tree collection, as
illustrated in Fig. 2(b). For example, the monophyletic group
exploration task (T5 in Sec. 4) hinges on whether there is an
exact match with similarity exactly equal to 1.0 between
a reference tree branch and a corresponding branch, or an
inexact match where the similarity is strictly less than 1.
This computation is similar to the best corresponding node
(BCN) proposed in TreeJuxtaposer [3]; algorithm details are
provided in Sec. 7.1.

We use corresponding branches to also derive a third
attribute, the gene support frequency (GSF), on every reference
tree branch: the percentage of trees in the entire tree collec-
tion with exact matches for that branch. This metric captures
uncertainty information of a subtree in the reference tree
with respect to a tree collection, where support values
usually fall short; several other biological metrics, such as
the internode certainty [42], have similar goals.

4 TASK ABSTRACTION

The overarching goal in ADView is to compare a single
reference tree to a collection of many other trees. We break
down this goal into a set of seven specific tasks that were
identified through multiple rounds of interviews with four
biologists who work across multiple sub-fields of phyloge-
netic research including plant phylogeny, insect phylogeny,
and mathematical modeling. We held weekly meetings with
one of them, who specializes in plants and is a co-author
of this paper, to allow frequent checks on the validity of
our task abstractions and the utility of our visual interface
during incremental refinement. In addition, we reviewed
the biology literature on phylogenetic reconstruction and
analysis.

In the language of Kerracher and Kennedy [43], we take
a multi-strand approach to task gathering, primarily via
interviews with domain experts and secondarily by deriving
from literature. Two potential threats to validity did not
apply in our case: the domain experts were indeed available,
we were able to maintain a focus on task discussions, and
skewing tasks towards a single domain is a feature not a
bug given our goal to target phylogenetics in particular.
We addressed the potential difficulties in introspection by
conducting many rounds of elicitation and followup.

The seven tasks are:

• T1: Find subtree by taxa names. Biologists are typ-
ically familiar with the names of species in their
study; an example is to find the subtree that consists
of mammals.

• T2: Find branch / subtree with respect to an attribute
range in the reference tree. The two attributes of sup-
port value and gene support frequencies are useful in
suggesting interesting areas to investigate.

• T3: Pairwise compare one tree in the collection with
the reference tree in detail. Allowing biologists to in-
spect a tree in full detail alongside with the reference
tree allows them to make biological judgment calls
about their findings. For example, they can see how
species in a subtree are distributed in a target tree
compared to the reference tree: whether there are
any outlier species that are far away from others or
scattered across the whole tree.

• T4: Inspect topological relationships between mul-
tiple subtrees. Fig. 2(a) shows three examples of
relationships: nested, separated, or sisters. A subtree
can be nested within another subtree. Otherwise,
biologists would like to know if they are separated
or direct siblings, known as sisters. They also want
to know which subtrees are the closest to each other,
and have a rough sense of the topological distance
between specific subtrees.

• T5: Explore the monophyletic groups (the complete
leaf set of a subtree) in terms of agreement or dis-
agreement between trees, as illustrated in Fig. 2(b):
do the taxa nested beneath a branch in one tree
(the three leaves to the right of branch A) all fall
beneath the corresponding branch in another tree?
(They do for A1 in Tree 1 but not A2 in Tree 2.) How
many and which trees agree with exact matches or
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disagree with inexact matches? Do they agree with
each other? How many alternatives are there?

• T6: Investigate the conflicting taxa between disagree-
ing subtrees. Users want to know which taxa cause
the conflicts, allowing them to notice connections
with previous findings such as whether a particular
family of species is known to be hard to resolve.

• T7: Assess the corresponding branch attributes to
associate their values with the (dis)agreement for
monophyletic groups. This task is lower priority,
but the uncertainty measure on the corresponding
branches can help biologists to gauge their confi-
dence on their findings. For example, a correspond-
ing branch from a conflicting tree with an extremely
low support value might signal a spurious conflict.

The actual workflow of biologists is incremental and
iterative, so these tasks can occur in any order. We provide a
few concrete examples of tasks sequences drawn from their
analysis process, and discuss them further in Sec. 8:

• T1 ↔ T2: sanity check on topology and attribute
values of the reference trees, then identify interesting
subtrees.

• T4 ↔ T3 ↔ T7: explore topological relationships,
compare hypotheses, and support values distribu-
tion.

• T5 & T6 ↔ T3 ↔ T7: check agreement and conflicts
of taxa memberships, inspect details of a specific tree,
check support values.

These tasks led us to identify five relevant levels of
detail: 1) tree collection, 2) a subset of trees, 3) individual
tree, 4) subtree, and 5) individual branch or leaf node.
These five levels provide a new abstraction that is a more
precise articulation of the problem space than the three
levels illustrated in Fig. 1, and informed the design of the
Aggregated Dendrogram.

5 AGGREGATED DENDROGRAM (AD)
We propose a novel technique to aggregate tree representa-
tion that specifically addresses the difficult problem of topo-
logical relationships between multiple subtrees (T4) given
hundreds of trees, and partially addresses the agreement of
monophyletic groups task (T5). In this section, we indicate
the motivation of the aggregated dendrogram, present its
visual design, explain how similar ones are clustered, and
share a glimpse of its evolution with a discussion of how
earlier designs fell short.

5.1 Design requirements
In essence, the problem comes down to how to visually
compress a tree with space requirements. First, the size
of the compressed representation should be small to fit in
as many trees as possible within a single screen. Second,
the information contained in the compressed representation
should adapt to the available screen space: given a larger
area, it should convey more details than in a smaller one.

We determine what should and should not be com-
pressed according to our task abstraction. Given a rooted
tree and several focal subtrees, the critical information to

show visually is the type of relationships between focal
subtrees: either nested or separated and more specifically,
(non-)sister relations (T4); also, whether the subtrees agree
with the reference tree or not (T5). It can be helpful to
also show distances between subtrees and more information
about conflicting subtrees such as neighboring clades and
placement of the conflicting taxa. Our design target is to
support up to five focal subtrees, to provide a reasonable
tradeoff between power and comprehensibility. Our investi-
gation found that this number suffices for most phylogenetic
questions. We design for a screen resolution of 1920x1080.

5.2 Visual design

Fig. 3. Visual encoding of an aggregated dendrogram.

Driven by a combination of the design requirements and
inspiration from previous work [5], [9], [12], we decided to
take a non-distorting focus+context approach to compress-
ing a tree, where less important information is elided [44,
Chap. 14]. Specifically, we aggregate the dendrogram repre-
sentation of a tree, as the biologists are most familiar with
this form. Fig. 3 presents the final visual design of aggre-
gated dendrogram (AD). In Sec. 5.4 we justify this design
by discussing the shortfalls of several alternative designs
that were confusing to the biologists; our task abstraction
evolved iteratively, as the less successful attempts surfaced
our misunderstandings by violating previously implicit as-
sumptions of phylogenetic analysis.

A crucial design choice is to have each rectangular block
in an AD always represent a subtree; that is, a monophyletic
group in that tree. We also take care to visually distinguish
whether each block is an exact match that agrees with a
subtree in the reference tree, or an inexact match indicating
disagreement, through different border styling.

The focal blocks represent the subtree beneath this tree’s
branch that corresponds to a selected one from the reference
tree. These blocks have thick black borders and labels and
their height is linear to the number of taxa inside, subject to
the hard legibility constraints discussed in Sec. 7.2. Context
blocks are rendered as less salient small rectangles with a
grey border.

All AD block colors are consistent with the reference
tree, where the proportion of colors indicate the percent-
age of highlighted taxa in this subtree. Exactly matching
blocks, which have solid borders, are always fully colored
because they exclusively contain all taxa under the reference
tree branch. Inexactly matching blocks, which have dashed
borders, are sometimes partly colored due to other taxa
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that have intruded, as shown in the partial blue block in
Fig. 3. Sometimes color appears in non-focal blocks due to
escaped taxa, namely matched taxa that are found outside the
corresponding subtree, shown by the tiny blue and orange
context blocks between blocks A and B in Fig. 4(c).

There is only one kind of block that is not a subtree:
the oval that can appear at the very bottom of the AD
represents all missing taxa, as shown in Fig. 3. Its rounded
corners clearly distinguish it from the other rectangular
blocks, and its border is dashed. The distribution of different
highlight colors for taxa within the same block is shown
with vertically layered rows.

Unimportant parts of the tree are collapsed, as indicated
by the special slash marker on a branch. For example,
in Fig. 3, many evolutionary events along the path from
the root to A’s direct ancestor are elided, as we see from
the slash crossing the dotted branch. Users can specify a
collapse threshold of topological distance from highlighted
blocks to either their lowest common ancestor or their nest-
ing block. For example, Fig. 3 was made with the threshold
set to 2; block C is more than 2 levels deeper than B, so
everything between B and C is hidden. This threshold is a
soft constraint in the legibility criteria discussed in Sec. 7.2.

Our approach depicts the topological backbone relation-
ships faithfully. In Fig. 3, the following information can be
easily interpreted: A and B are parallel but not sisters (direct
siblings); C is nested within B with distance greater than
two; A, B and C are far from the root (distance > 2).

Fig. 4. Illustration of how the AD adapts to available space. These three
ADs are based on the same tree and the same four focal subtrees, but
with different size specifications: (a) 40, (b) 80, and (c) 160 pixels.

The AD algorithm, which we describe in detail in
Sec. 7.2, adapts to available screen space automatically, as
shown in Fig. 4. The algorithm makes a best-effort attempt
to fit in as much information as possible, in terms of la-
bels and context blocks, while keeping visible the critical
information such as selected subtrees and their topological
relationships (as defined in Sec. 5.1).

The individual ADs can be sorted by global distance
to the reference tree, or by local distance with respect to
a selected subtree.

5.3 Visual summary: Cluster AD
Although the individual ADs are spatially compact, when
the tree collection is sufficiently large there can still be more
than will fit within a single screen. We cluster the ADs that
share the same topological relationships (as defined in task
T4) and just render one representative AD, as illustrated in
Fig. 5. By grouping ADs into clusters, we obtain a summary
of all possible kinds of relationships among focal subtrees
in the tree collection. The value of preserving individual

Fig. 5. Two examples of clustering structurally similar aggregated
dendrograms. (a) Cluster groups 51 trees together where A and B are
parallel. (b) Cluster groups 4 trees together where A is nested within B.

views that are topologically equivalent is they might end up
highlighted differently depending on what other selections
are made, which would provide useful information (as
discussed in Sec. 6.6).

We ignore all context blocks while performing clustering,
so that differences considered unimportant according to our
criteria do not result in scattered or even spurious clusters.
We randomly choose one of the constituent ADs from a
cluster AD as a proxy for the entire cluster. The normal solid
coloring is changed to a gradient to indicate the different
proportions of filled color across the blocks in all ADs of
that cluster. The clustering algorithm is presented in Sec. 7.3,
and the gradient coloring is documented in Supplemental
Sec.S2.

5.4 Design evolution
We tried many unsuccessful versions of aggregated den-
drograms, four of which are shown in Fig. 6: remainder,
container, fine-grained, and frond; it also shows the final
skeleton layout which was successful. Eliciting feedback
about these versions led to more clarity about what under-
lying biological meaning should be preserved in terms of
both the focal and the context parts of the visual encoding.

One design question that required extensive iteration is
the semantics for visible blocks in the diagram. Our first
two attempts, the remainder and the container layouts, did
not adhere to our current semantics that a rectangular block
must represent a monophyletic group; that is, a complete
subtree underneath a branch. We eventually realized that
identifying monophyletic groups was an underlying sub-
task for the larger-scale biological questions that were being
studied, so all alternatives where rectangles could represent
non-monophyletic groups were confusing to the biologists.
We then articulated T5 (monophyletic groups) as an explicit
task during our iterative refinement of the task abstraction,
which occurred in parallel with the design evolution.

The fine-grained layout did not scale past a few chosen
subtrees. The frond layout also suffered from some scala-
bility problems with excessive requirements for horizontal
nesting, and moreover elided so much context that impor-
tant questions were difficult to answer. The final skeleton
layout was the result of several months of exploration in
this very large design space of tradeoffs. Our final design
features a careful mix of which parameters should be con-
trolled by users, vs. hardwired, vs. adaptively computed.
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Fig. 6. Five versions of the aggregated dendrogram design in chrono-
logical order of invention. The first four were unsuccessful: remainder,
container, fine-grained, and frond. The successful fifth layout, skeleton,
built on lessons learned.

6 ADVIEW INTERFACE

We first give a brief tour of ADView, followed by the
details about each of the views, and then discuss the view
coordination in depth with respect to the five levels of detail.

6.1 Interface overview

Fig. 7 is a screenshot of ADView comparing a reference
species tree against a collection of 68 species trees gener-
ated with different phylogenetic reconstruction methods.
In the Reference Dendrogram on the left, four subtrees have
been selected by the user to be the current focal groups,
labelled A, B, C, and D and highlighted in blue, orange,
green, and red, respectively. In the Tree Distribution view
near the top, each row shows how the tree collection can
be grouped by agreement or disagreement with respect to
each focal subtree. Below that, the Aggregated Dendrogram
(AD) view consists of cluster aggregated dendrograms and
individual ones, showing topological relationships between
the selected focal clades. Currently the user has selected
the second cluster AD, highlighting 22 trees with a brown
background, and is hovering on the second segment of row
B in the Tree Distribution view, highlighting 12 trees with
a black border. There are three auxiliary views showing
additional information for the trees.

6.2 Reference Tree and AD Views

The Reference Tree view in the left pane of ADView is always
devoted to showing the reference tree at full detail. We
visualize this important phylogenetic tree with a branching
style dendrogram with name labels for all taxa. This format
is very familiar to biologists, intuitively supporting the Taxa
Name task (T1). The horizontal length of a branch either
encodes the branch length attribute, or uniform lengths can
be chosen if high variance in branch lengths would lead to
visual artifacts. In the Reference Branch Attribute view at the
top of that pane, we show the distribution of the two main
branch attribute values, the support values from raw data
and the derived gene support frequency (GSF). The pink
range selection area controls which branches that match
the chosen attribute range are highlighted in pink in the

Reference Dendrogram, in support of the Attribute Range task
(T2).

The crucial interaction for ADView is to select a subtree
in the reference tree and inspect the support and conflicts
in the tree collection shown in the Aggregated Dendrogram
views, in support of the Topological Relationships (T4),
Monophyletic Groups (T5), and Conflicting Taxa tasks (T6).
When the user picks an interesting subtree / branch, that
subtree is labelled and colored in the Reference Dendrogram,
a new highlighted block representing it is added to all of
the aggregated dendrograms, and a row is added in the
Tree Distribution view. ADView also allows for selecting a
user-specified taxa group to handle cases where the user is
interested in an arbitrary set of taxa that is not a mono-
phyletic group in the reference tree, combining multiple
choices using a popup menu rather than selecting a single
reference-group subtree.

We provide a simple layer of automatic control for AD
size that takes into account the number of trees that need to
be drawn in each of the two views, the Individual AD and
Cluster AD, to make intelligent use of the available screen
real estate. The goal is to set a target size that preserves a
reasonable amount of detail, ideally while fitting all of the
ADs into a single pane without requiring vertical scrolling.
When the number of trees is too large to fit even with small
individual sizes, the leftover ones that do not fit within
the pane are elided by default; the user can show them
with the More button. The user can override this automatic
size control by using a manual slider to indicate a specific
desired height and width for all ADs. In both cases, the
best-match AD layout algorithm is used to create layouts
for the specified size. This size control mechanism was
added late in the design process, after watching users miss
opportunities to obtain better overviews.

6.3 Tree Distribution View

The Tree Distribution view at the top is focused on the
Monophyletic Group (T5) and Conflicting Taxa (T6). Each
row consists of multiple horizontal segments that represent
groups of trees in the collection that agree with respect to
the focal subtree, as shown in Fig. 8. A segment represents
the subset of trees whose matching subtrees share the same
taxa set with each other. The first segment shows the subset
that agrees with the reference tree, which is marked with a
circled R marker (R for reference). The following segments,
sorted by frequency from left to right, are the conflicting
subsets. Each subset indicates one hypothesis of the taxa
set of a selected subtree, and thus the full row shows all
alternatives of the taxa set that exist in the tree collection
with respect to a specific branch.

When the user persistently selects or hovers over a
segment, dot markers appear beside the taxa labels for that
subtree in the reference tree dendrogram. In the top example
of Fig. 8, the user hovers over the middle segment of row
B, and we see from the black dots that the taxa set for this
subset of trees does not have SPIROGYRA SP. In the bottom
example, the user has persisted the dot markers for the
middle and right segments in row A, and is now hovering
on the left segment. The persistent selection triggers the
reference tree labels to move from ragged-right layout to be
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Fig. 7. Screenshot of ADView comparing a reference tree (left pane) against a tree collection (right pane).

Fig. 8. Selecting a segment in the Tree Distribution view shows dots for each taxon within its group in the reference tree, temporarily in place on
hover (above) or right-aligned for comparison between persistent selections (below).

right-aligned, to allow easy comparison of multiple columns
of dot markers. The middle segment (labelled 1) has two
taxa absent compared to the reference tree; that is, their
closest subtrees to A do not include the first two taxa.
The rightmost segment (labelled 2), which is very narrow
because it only contains a few trees, is missing nearly half
of the taxa in A.

6.4 Pairwise comparison

Users can select a specific tree from the tree collection for
Pairwise Comparison (T3) with the reference tree in a but-
terfly layout, as shown in Fig. 9. This mirrored layout, where
roots are on the outside and taxa labels are close to each
other, is a familiar idiom for biologists. The highlighting
is linked between the two trees, allowing users to locate

taxa of interest in the target tree. This linkage provides a
very salient way to quickly check whether a colored block
selected from one side is contiguous (meaning that there
is agreement between them), or dispersed on the other side
(showing conflict for that selected subtree). The missing taxa
are explicitly shown, and are integrated with the linked
highlight color. This feature was added in a late iteration
in the design process, after we realized the importance of
providing awareness of specific missing taxa. The ability
to inspect taxa membership from the tree distribution, as
described in the previous section, is supported on both sides
of the butterfly view.

Users can also select a subset of trees and create a
consensus tree out of it (with extended majority rule [36])
to pairwise compare with the reference tree. This feature
provides a convenient way to quickly get a sense of what
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Fig. 9. Pairwise comparison between the reference tree (left) and a
user-specified target tree from tree collection (right).

the subset of trees roughly looks like without diving into
each tree one by one.

6.5 Auxiliary views

There are three auxiliary views on the far right.
The Tree List view at the top shows a list of names of trees

with linked highlighting for the tree selection. Sometimes
trees are named according to conventions that reveal useful
information such as the data source, method, parameters to
generate the tree, and gene identification numbers.

The Tree Similarity view in the middle encodes relative
distances between pairs of trees to indicate potential cluster
structure, where each dot represents a tree. This view is
inspired by many papers in the category Many as Points.
Distances between dots correspond to distances between
trees as computed by the t-SNE dimensionality reduction
technique [45]. The default distance metric is Robinson-
Foulds to show global relationships, or the user can choose
a the inverse Jaccard measure that provides local relation-
ships with respect to a chosen subtree. These measures are
discussed further in Sec. 7.1.

The Corresponding Branch Attribute view is aimed at
the task of that name (T7) and shows the distribution of
attribute values of corresponding branches for a selected
focal branch / subtree.

6.6 View coordination and visual encoding

Visual indication of the coordination between multiple
views is a complex and constrained problem in ADView be-
cause of the many levels of detail we support. Supplemental
Table S1 provides a detailed breakdown of the most basic
level of view coordination: what aspect of data is visually
encoded (or not) across all levels of detail and all views.
The size of visual elements varies enormously between the
views: the region subtended by a single tree ranges from a
small point in the Tree Similarity view to a medium-sized cell
in the AD view; subtree blocks can be large in the Reference
Tree view but small in the AD view.

This variability poses a difficult challenge for color cod-
ing because distinguishability depends on size. Neverthe-
less, given the power of color for showing categories and
the desirability of color consistency across elements between
views [46], we carefully designed a color palette in consider-
ation of these tradeoffs. The five medium-saturation colors
for the subtree highlight blocks are designed to be roughly
equal luminance so that no focal subtree seems more im-
portant than the others, sufficiently salient for large regions
in the Reference Dendrogram view and small regions in the
AD view, against both the white default backgrounds and
brown selected backgrounds. There is adequate luminance
contrast for the black text label legibility, while maintaining
distinguishability for the small highlighted pink branches
that could occur within these blocks or against a white
background.

We off-loaded some selection indicators to other visual
channels, using additional point marks to show taxon se-
lection in the Reference Tree, and border outlines showing
tree selection for both points in the Tree Similarity view and
cells in the AD views. Moreover, shape coding and line type
coding is already used extensively in the AD design itself.

Fig. 10. Legends summarize the visual encodings. (a) Reference tree.
(b) Aggregated dendrograms.

Fig. 10 shows a closeup of the two legends that appear at
the bottom. To summarize, linked highlighting is encoded
in several ways: five medium-saturation block colors for
subtrees (blue, orange, green, red, purple), both background
color (brown) and border outlines (black) to indicate two
forms of tree selection, line color for branches and region
color within attribute range histograms (pink), and addi-
tional point marks (black) for taxa.
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7 ALGORITHMS

We provide an overview of the ADView architecture, then
present specific algorithms in detail.

We use a browser-server architecture for ADView. The
user can submit a dataset using the Upload page in browser,
as shown in Supplemental Fig.S26 and Fig.S27, which sends
the raw tree files (in Newick format [47]) to the server. A
Python asynchronous pre-process worker in the server is
then invoked as shown in Supplemental Fig.S28. It parses
all trees, computes distances between all tree pairs and cor-
responding branches between each branch in the reference
tree and each tree in the tree collection, stores them into a
MongoDB database, and notifies the user upon completion.
When a client session begins, the browser fetches data
from a lightweight RESTful API, performs dimensionality
reduction to the distance matrix using t-SNE [45], presents
the data, and responds to user interaction such as updating
the ADs when a new branch of interest is selected. We use
React+Redux to manage state of data model, view, and user
interaction in the browser, and we render almost all visual
elements in SVG manually with some help from D3. The
implementation is available as open source under an MIT
license from https://github.com/zipengliu/adview.

7.1 Corresponding branches

Finding comparable counterparts between the trees, namely
corresponding branches, is done in the server when the user
uploads a new dataset. The corresponding branch is the
most similar branch in each tree of the tree collection to a
specific branch in the reference tree, analogous to the best
corresponding node (BCN) proposed in TreeJuxtaposer [3]. An
example is shown in Fig. 2(b).

We define the similarity between a branch b in reference
tree R and a branch b′ in a tree T of tree collection as the
Jaccard index between two leaf nodes sets beneath the two
branches, excluding missing leaves:

|b.taxa− T.missing| ∩ |b′.taxa−R.missing|
|b.taxa− T.missing| ∪ |b′.taxa−R.missing|

where b.taxa and b′.taxa are the leaf node sets under b and
b′, R.missing and T.missing are the respective missing
leaf node sets. Missing taxa are excluded for a less biased
comparison, following general practice in phylogenetics
research. Failure to exclude would lead to a record of both
conflicting and missing signals, in contrast to our goal which
is to focus only on the conflicting signals.

This measure, which captures set memberships, is an
intuitive extension to the standard biological convention of
Robinson-Foulds distance metrics for trees [48]. This set-
based measure is simple to compute and is a good match
with our task abstraction and our visual encoding and
interaction design choices. We note that Bremm et al. [5]
propose a more complex similarity metric that captures
both topological structure and set membership, which they
use to create histograms that convey aggregate information
about mid-level structure; however, the details about what
is different cannot be seen with this approach because they
are aggregated away. Our approach communicates a great
deal of detailed mid-level topological structure through the

ADs, so we only rely on the similarity metric for a first stage
of exploring whether trees agree on what taxa are in a clade.

We need to compute the similarity score of every branch
pair between the reference tree and tree collection, as
shown in Algorithm 1. We use a bottom-up approach for
the GetSimilarity() function. Supposing A = b.taxa −
T.missing and B = b′.taxa − R.missing, the algorithm
bottleneck is to compute |A ∩ B| when A is fixed. The leaf
set of an internal node is comprised of the leaf sets of its
children. We can thus compute |A∩B| by summing |A∩B1|
and |A ∩ B2|, where B1 and B2 are the leaf sets of B’s left
and right children excluding R.missing.

Algorithm 1: Corresponding branches to every
reference-tree branch

Input : reference tree R, tree collection C
Output: all corresponding branches corr

for b ∈ R do
for T ∈ C do

targetSet← b.taxa− T.missing
for b′ ∈ T in post order do

similarity ← GetSimilarity(b, R, b′, T )
if similarity is better then

corr[b][T ]← b′

end
end

end
end

Function GetSimilarity(b, R, b’, T)
if b’ is a leaf then

// b′.card: cardinality of |b′.taxa−R.missing|
1 b′.card = 0 if b′.taxon ∈ R.missing else 1
2 b′.intersect = 1 if b′.taxon ∈ targetSet else 0

else
b′.card = b′.left.card+ b′.right.card
b′.intersect =
b′.left.intersect+ b′.right.intersect

end
union← |targetSet|+ b′.card− b′.intersect
return b′.intersect/union

Algorithm analysis: Algorithm 1 computes similarity of all
branch pairs between the reference tree and tree collection in
O(N2 ∗ |C|) time, where N is the number of leaf nodes in a
tree and |C| is the number of trees in the collection. Function
GetSimilarity() is amortized O(1) as the checking state-
ment in line 1 and 2 utilizes a hash table. The O(1) similarity
calculation is a substantial improvement compared to the
O(logN) TreeJuxtaposer [3] approach.

7.2 Aggregated dendrogram layout

Every time a subtree of interest in the reference tree is
selected or removed, we update the layout of all aggregated
dendrograms, which is handled on-the-fly by the browser.
Given a tree data object, a set of focal subtrees, and the
AD parameters, we use a best-effort mechanism to gen-
erate an AD layout that adapts to the specified size. The
user-specifiable parameters exposed in the interface are the
height and width of the AD, the number of context levels,

https://github.com/zipengliu/adview
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and whether to apply labels and colors. Several more algo-
rithm parameters exist, and are illustrated in Supplemental
Fig.S4. The block color is determined at a later step in our
rendering pipeline; the layout algorithm described here only
computes the position and sizes of blocks and branches.

Algorithm 2: Best-effort aggregated dendrogram lay-
out

Input : tree, focalSubtrees, params
Output: AD layout or failure

AD← generateLayout(tree, focalSubtrees,
params)

while not isLegible(AD) do
params← shrinkParams(params)
if not params then

return failureGlyph
else

AD← generateLayout(tree, focalSubtrees,
params)

end
end
return AD

As shown in Algorithm 2, we keep generating tentative
layouts with different parameter settings until the latest
one passes a legibility test or parameter choices are ex-
hausted. The function generateLayout() compiles a list of
blocks and then links them together with either normal or
elided branches by a bottom-up traversal. The coordinates
of blocks and branches are then calculated based on the
block hierarchy and relevant AD parameters such as total
width and height. The function isLegible() takes a layout
and determines whether the blocks and branches will be
visible if drawn. The hard target is that focal subtrees
need enough room to be colored; the soft target is to have
enough room for labels as well, as a redundant encoding if
space permits. A set of parameters will be “downgraded”
from more sprawling to more compact by the function
shrinkParams() every time the legibility test fails until
the lower limit of all parameters is reached. There are two
cascading sets of flexible parameters that can be changed: 1)
the number of context levels, a metric to control how many
context blocks to show; 2) inter-block gaps, branch lengths,
and block sizes. The function shrinkParams() first shrinks
the first set until lower limit is hit, then starts to shrink the
second set. If legibility is not achieved, the algorithm returns
an error, which causes the interface to show a failure marker
to notify users that there is no hope of fitting an AD in such
space, indicating that the size parameters should be turned
up manually using the UI sliders to override the automatic
size-control algorithm one layer above this layout algorithm.

One example of a failure case would be rendering 5
selected nested sub-trees in 30x30 pixels. The user could
decide whether it would be more appropriate to select fewer
subtrees (for example, if some uncleared selections were left
over from previous analyses rather than being crucial for
the current investigation), or simply to allocate more space
to each AD and accept the tradeoff that all of the individual
ADs do not fit within a single screen. While our automatic
algorithms do quite a bit of work on behalf of the user,

our strategy is a mixed initiative approach that relies on
the judgment of the expert user.
Algorithm analysis: The number of trials per AD depends
on both the characteristics of the input tree itself, the amount
of context to show, and other size related parameters. Our
empirical observation is that with the current settings of
ADView this number is less than 10 and usually just 1 or 2.
The computational time of this algorithm is hence that of the
function generateLayout(), which is linear to the number of
nodes in a tree.

7.3 Cluster aggregated dendrogram

Algorithm 3: Cluster topologically identical ADs
Input : AD layouts
Output: Cluster ADs

strings← serialize(AD layouts)
Cluster ADs← group(sort(strings))
Cluster ADs← sortByFrequency(Cluster ADs)

After generating AD layouts for all trees, we cluster
them into groups of shared topological relationships among
focal subtrees, as shown in Algorithm 3. The serialization
of AD computes a string that looks very similar to the
Newick file format [47], which maps topologically identical
AD layouts to identical strings. The user can choose to
further distinguish exact and inexact matches, and sister-
group or separate relationships. For example, the AD in
Fig. 3 is serialized into a string “(A, (C)B))”. If exact-
ness and sister-group relationship is considered, it becomes
“(A−, (C+)B+)/”, where + and − stand for exact and
inexact matches, and / and | for non-sisters and sisters.
We only consider focal subtrees and ignore everything else.
After serialization, the clustering problem is transformed
into a trivial one: grouping the same strings together.
Algorithm analysis: Because serialization only requires a
traversal of AD blocks, and the number of blocks is usually
very small (less than a dozen), the time complexity of Algo-
rithm 3 relies on sorting short strings. It is thus O(n log n),
where n is the number of ADs.

8 RESULTS

We present empirical benchmarks for the computational
performance of the algorithms, an informal comparison fo-
cusing on information density to the Bremm et al. [5] system,
and a usage scenario illustrating several typical workflow
steps for ADView. We briefly report on formative feedback
from ten domain experts during the iterative design pro-
cess, and then present a summative expert interview study
on the utility of ADView including two case studies. The
supplemental material includes multiple full screenshots of
the first usage scenario, a second usage scenario with over
1300 gene trees compared to a single species tree, and also a
video to show the look and feel of the system in action.

8.1 Computational performance
We deployed the server programs and database to a small
server with two 2.20 GHz Intel Xeon E5-2650 CPUs and
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2G RAM hosted by our university, and run the client on
a Chrome browser on a 2012 Macbook Pro with a 2.50 GHz
Intel i5 CPU and 8G RAM. For a dataset with 500 trees and
about 100 leaf nodes per tree, created by sampling from
the public 1KP dataset (as discussed in Sec. 8.3), it takes
roughly 50 seconds to pre-process the data on initial upload
and 10 seconds to load in browser at startup. The size of
the compressed dataset is about 2MB. The user interaction
in the browser is fluid when the number of trees is less
than roughly 500. There is noticeable delay of about 1 to
2 seconds for datasets beyond this scale when all individ-
ual aggregated dendrograms are displayed, but immediate
responsiveness can be restored by collapsing that pane. We
used a caching technique to accelerate the rendering of AD
in browser, which is detailed in Supplemental Sec.3.2.

8.2 Information density comparison

We directly compare ADView to its closest competitor, the
tool developed by Bremm et al. [5], using their dataset of
33 trees and 32 taxa. An initial impression from ADView is
that the trees seem very different from each other: very few
branches in the reference tree are supported by majority. In
the rest of this comparison we focus on the visual encoding
and interaction scalability.

Supplemental Fig.S19 shows their system after adding
12 trees to the right panel and selecting one subtree of the
reference tree, which is highlighted in pink. All matched
nodes are highlighted across the trees, but their system only
allows one focal subtree at a time. Without any manual
filtering, many irrelevant parts are visible and the layout
is visually crowded. Supplemental Fig.S21 shows the view
after we filter out elements with similarity scores below 0.5.
Substantial space is required for layout because the entire
path between the internal nodes and the root is preserved.

Supplemental Fig.S20 shows ADView with the same
dataset after we select three subtrees in the reference tree.
(The paper’s materials do not include enough information
to replicate the selected groups, so we randomly chose
subtrees to highlight.) The cluster ADs show the major topo-
logical relationships between the blue, orange and green
clades (task T4), and the Tree Distribution view shows the
agreement and conflicts on each of the selected clades
in terms of taxa memberships (T5). These two views in
ADView provide topological information in a more space-
efficient way than the full dendrograms in Fig. S19, and with
far more detail than can be gleaned from their heatmap and
histogram views based on similarity scores. If the similarity
scores are of direct interest, in ADView the user can use
sorting by similarity, see distributions in the histograms, or
hover on a specific branch in the Pairwise Comparison view.

From the screenshots, we can conclude two major ad-
vantages of ADView over their system. First, one of the
important tasks, topological relationships between subtrees
(T4), cannot be supported by the color coding and filtering
mechanism of the similarity score they propose, while the
ADs in ADView are more suitable for this task. However,
a usability disadvantage of our system is that due to the
broader scope of task complexity, it is more difficult to
learn. Second, ADView can scale to much larger number of
trees due to higher spatial efficiency of tree representation.

We also note that they do not show taxa names on their
interface, which is an essential piece of information for our
biologists to interpret the display. However, for datasets
such as this one with a small number of trees and small tree
sizes, their system has the advantage of showing selectable
taxa in all of the small-multiple tree views, which fit on a
single screen side by side.

8.3 Usage scenario 1: 1KP pilot study

The 1000 Plants Consortium (1KP) gathered phylogenetic
data for thousands of plants and published a pilot study
about the origin and early diversification of land plants [49].
One of the main research questions is to determine the sister
group of LAND PLANTS (LP for short).

The authors picked 103 representative plant species of
major groups in STREPTOPHYTES, and produced 69 species
trees by performing 69 different analyses; that is, 69 runs
of the computation pipeline, spanning different statistical
methods and parameter settings, different filtering criteria,
and different kinds of sequences. They compared these trees
with previous hypotheses to the research questions.

We took their published data and checked whether
their research questions could be answered quickly with
ADView. This usage scenario was created with the domain
expert who is a co-author on this paper, who has close ties
to the researchers who wrote the original paper. We report
on one of these questions below, and present a second one
in Supplemental Sec.S6. We randomly picked one tree as
the reference tree, using the other 68 as the tree collection.
We also confirmed that the same results were reproduced
by picking another reference tree, where all but 1 of the 68
aggregated dendrograms remained very similar.
Correspondence of cluster ADs to known hypotheses: the
previous hypotheses said land plants (LP) might be the
sister of ZYGNEMATOPHYCEAE (ZYGN), CHARALES (CHAR)
or COLEOCHAETALES (COL), as illustrated in Fig. 11(a). We
selected and highlighted these four clades in the reference
tree as our focus. ADView generated the ADs and clustered
them into five groups (without considering exactness but
with sister-group relationships), which can be regarded as
five hypotheses that this dataset supports. We quickly found
out that clusters C1 and C4 support the ZYGN-sister hypoth-
esis, clusters C2 and C5 support CHAR-sister, but cluster C3
does not agree with any of the three (task T4).
Support values in C1 + C4 (ZYGN-sister trees): when we
checked the distribution of support values (T7) by selecting
the trees of C1 and C4 and created a sub-collection, as shown
in Supplemental Fig.S7, there are trees with low support
values. We can interpret this display as a counter-evidence
to the ZYGN-sister hypothesis.
Conflicts in ZYGN: inspecting the Tree Distribution view
in Fig. 7, we saw that all 68 trees plus the reference tree
agree that LP, CHAR and COL are grouped together (mono-
phyletic). However, a small portion of trees disagree with
the reference tree about ZYGN, as shown in the hovered-
over segment (T5). To investigate what triggered the dis-
agreement (T6), we selected those trees by clicking on that
segment, made a consensus tree out of them, and pair-
wise compared with the reference tree (T3), as shown in
Fig. 11(b). It turned out that a species, SPIROGYRA, was not
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Fig. 11. Annotated screenshots for a research question in the 1KP
pilot study: which is the sister group of LP? (a) Previous hypotheses
(excerpt from their paper [49]) and the cluster ADs in ADView; arrows
show hypotheses the cluster ADs support. (b) Consensus tree of cluster
C3 pairwise compared to the reference. (c) Branch support values of
trees supporting the LP+CHAR hypothesis.

included in ZYGN for these trees; we pairwise compared
with each selected tree to double check (T3). The authors
of the pilot study confirmed that there are complicated
underlying issues for this misplacement.
Details in C2 + C5 (CHAR-sister trees): in Fig. 11(c), we
further dug into the support for CHAR-sister hypothesis by
combining LP and CHAR into group Z to see whether trees
contain it (T1). Since Z is not a complete subtree in the
reference tree we could not directly select it, so we used
the popup menu that supports selecting an arbitrary set
of user-specified taxa to choose the combination of LP and
CHAR. . There were 23 exact-match trees, which is exactly
the number of trees for cluster C2 plus that of cluster C5
(T4). In the Corresponding Branch Attribute view, we checked
the black foreground bars in the histogram of support values
for corresponding branches of these 23 trees (T7). The circled
bars showed that some trees have very low support for
LP+CHAR (biologists consider support less than 0.5 very
low). The Tree List view showed that these trees are mostly
generated from a kind of unfiltered sequence data that has
been called into question in the domain literature.

The workflow description above covers some interesting

and representative steps extracted from the full session, in
which further visual analysis was conducted to check the
supporting and conflicting evidence for additional hypothe-
ses. By the end of the full session, we had found substantial
evidence to support the pilot study’s conclusion that ZYGN
is probably the sister-group of LP, although there seems to
be counter-evidence that merits further inspection.

8.4 Formative expert feedback

We obtained informal formative feedback during the iter-
ative design phase from the four phylogenetic researchers
who worked with us throughout the project. At a quite ma-
ture stage of development we also presented it to six other
phylogenetic researchers via chauffeured demos. Overall we
received positive feedback confirming that our task and data
abstractions matched with their biological intuitions, and
that the functionality provided by ADView would be help-
ful to them. We also gathered suggestions for improvement,
many of which informed further iteration of the design.

8.5 Summative expert interview study

We conducted an expert interview study with five domain
experts; our observations and their feedback served to con-
firm the validity of our task abstraction and interface design.
We describe the participants and procedure, present two
case studies here (with an additonal one in Supplemental
Sec.S8.3), and discuss their feedback.

8.5.1 Participants
We recruited five participants who are actively involved in
phylogenetic research and conducted four study sessions of
90 minutes each. In this paper, we refer them as P1, P2, P3,
P4a and P4b (the latter two were in the same shared session).
Four of them come from different labs at our own university,
and one from overseas. Four were researchers focusing on
biological questions with different kinds of organisms, three
of them PhD students and one principal investigator; one
was an experienced bioinformatician whose daily job is
to manage, process, analyze phylogenetic data of his lab.
Two had seen a previous version of ADView demonstrated
to them a few months before the study took place; one
had seen screenshots accompanied by a general description.
Participants P4a and P4b did not have relevant research
datasets of their own and used those from the usage sce-
narios; the three others used their own data. Supplemental
Table S2 provides detailed participant characteristics.

8.5.2 Procedure
We requested they send us one or two of their own research
datasets a few days before the session and added them to
ADView ourselves to ensure they were ready for immediate
use; in some cases we undertook minimal pre-processing
effort such as mapping machine-friendly sequence labels
into meaningful human-readable names. In the session, we
first gave a 20-minute demonstration of the two usage
scenario datasets to illustrate the system’s functionality, and
also explained the exact details of how their individual
datasets were pre-processed. Next, the participants used
ADView on their prepared datasets for roughly 50 minutes,
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where they were asked to think aloud while working. Our
primary goal with this study was to assess the utility of the
system rather than to improve the software usability, so we
encouraged them to immediately ask us any questions about
the meaning of the visual encodings and how to perform
certain operations, stepped in if we saw a clear misuse of the
tool or implementation bugs, discussed possible follow-up
actions if they were stuck, and asked questions if we were
not able to understand what the participants were doing. In
the final 20 minutes we asked a set of open-ended questions,
documented in Supplemental Sec.S4.2. We recorded audio
and video for the entire session, and took notes manually.

8.5.3 Case study 1 findings

Fig. 12. Detail views of P1’s findings. (a) Reference tree with four focal
subtrees selected to investigate the position of T10 (blue, label A) and
a branch highlighted in pink (circled). (b) Support distribution histogram
with very low values selected, driving the pink highlight in the reference
view. (c) Cluster ADs showing the top-frequency clusters.

P1 compared a species tree against 260 gene trees of
plants. We obtained permission to show this dataset with
anonymized organism names to protect unpublished data.
Sanity check on support values: upon loading the dataset,
she noticed branches with extremely low support values
according to the reference tree attribute distribution, shown
in Fig. 12(b). She selected the leftmost bar, which highlighted
one branch in thick pink in the reference tree (T2), shown in
Fig. 12(a). Once she hovered on that branch, which contains
all in-group taxa, the branch detail panel shows that both
its support and length are zero. She clicked on this branch,
and the Tree Distribution view showed that all trees agree
with the reference tree, which seemed to conflict with the
zero support value (T5). After checking a few gene trees in
detail using the Pairwise Comparison view (T3), she figured
out that the zero-support in-group branch was generated by
the rooting process, and dismissed it as not relevant to her
research questions.
Position of T10 She then highlighted branches with rela-
tively low support values (0.8 to 0.9) in the same fashion
(T2), and discovered a specific taxon T10 was placed dif-
ferently across the gene trees. To understand the alternative
positions of T10 within a bigger monophyletic group, she
broke it down into several subtrees, visible as the blue,
orange, green and red groups (T4) in Fig. 12(a). The first
4 of the 56 cluster ADs are shown in Fig. 12(c). The majority
of the remaining clusters contained only one AD, which
suggested the relationships between the focal subtrees were

badly disputed. To investigate the reasons for the disagree-
ment, she looked at the consensus trees of the clusters and
pairwise compared several individual ADs to each other.

8.5.4 Case study 2 findings

Fig. 13. Cropped figures of P2’s findings: (a) The selected subtrees
of interest (blue- BLASTOCYSTIS STRAIN 1, orange - BLASTOCYSTIS
HOMINIS, green - BLASTOCYSTIS STRAIN 5); (b) different positions of
orange taxon across bootstrapped trees.

P2 compared a consensus tree (used for the reference
tree) against 100 bootstrapped trees of parasites, and ap-
proved our usage of this dataset with unsanitized labels.
Sanity check on known strains: to familiarize himself with
the interface and interaction, he selected a few monophyletic
groups of different parasite strains (T1). He was able to
quickly confirm his knowledge of which two strains are
closer than others, and the general branching pattern of
strains 1 to 5, by selecting them in the reference tree and
then checking the cluster ADs (T4).
Unknown outlier (orange): he identified an interesting
species, BLASTOCYSTIS HOMINIS, shown as the orange
group in Fig. 13(b). He knew that it usually lives in pigs,
but he saw that here it was placed within the group mostly
related to humans (T4). He knew that the orange group
branched with the green one because he had seen it in the
reference consensus tree on the left, but he had not realized
that there is uncertainty about placement of the orange
group until he saw the cluster ADs. Fig. 13(b) shows that
only 40 trees out of 100 have the same branching pattern as
the reference tree, whereas there are 29 trees suggesting that
the orange is closer to the blue and that the green branched
before the other two. He then constructed a sub-collection
of each cluster and pairwise compared some trees one by
one within each sub-collection against the consensus tree
for more detail (T3).

8.5.5 Feedback
There was general agreement from all participants that
many aspects of the design were successful. The task and
data abstractions matched their biological intuitions, as did
the results of the corresponding branches algorithm. The
overall AD design showed many trees in a way that was
considered quite intuitive, despite being a completely new
visual representation to all participants. They all could see
themselves using ADView in upcoming research projects to
analyze the trees generated by a reconstruction pipeline.

Participants also noted limitations of ADView. Most
thought it was complicated to learn, and they would need
more experience using it to fully exploit its power. One
minor point of confusion came at startup time when no
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subtrees are selected, where the ADs consist of only a single
blank rectangle. While most participants agreed that the Tree
Distribution view was useful for exploring agreement and
conflicts of a selected subtree, it was sufficiently unusual
that two participants did not fully understand its meaning
until a discussion in the question period at the end. One par-
ticipant observed its connection to an existing visualization
that shows the distribution of alternative taxa groupings
with a small pie chart next to a tree branch [42, Fig. 2]; she
noted that we had “unrolled” a pie into a horizontal bar.

Although the main goal of this study was not usability
testing, we did make design refinements after each session
to address awkward interactions. Most were minor interac-
tion improvements, but a notable late-stage addition was to
automatically compute appropriate sizes for the ADs and
pass that request to the layout algorithm, rather then rely
on the user to explicitly set sizes through a manual slider.

9 DISCUSSION

ADView can be used by researchers to speed up the overall
process of phylogenetic analysis at multiple stages in a
project, especially exploratory analysis right after obtain-
ing the trees and also to generate figures to communicate
findings near the end of projects. We envision a workflow
where researchers would typically follow up their initial ex-
plorations with more rigorous statistical tools. It is difficult
to document the amount of speedup quantitatively, since bi-
ology papers do not typically provide any explicit estimates
of how long their original analysis process required, as with
our usage scenario source [49]. However, our biologist co-
author has extensive experience in analyzing this kind of
data. His assessment is that ADView provides substantial
speedups in assessing the quality of data, process debug-
ging and other sanity checking, identifying interesting areas,
gathering initial evidence, and generating hypotheses.

ADView can handle datasets of hundreds of trees with
about 100 leaf nodes per tree from an algorithmic point of
view. The de facto limit on the number of leaf nodes is
primarily due to the design target of fitting the detailed ref-
erence tree dendrogram on a single screen without scrolling.
There is no hard limit on the number of trees for our
proposed method, but our current implementation on the
browser can only deal with roughly 500 trees at interactive
frame rates before the number of SVG elements would slow
down the rendering process. However, for larger datasets,
the user can filter out many trees and analyze smaller
subsets of dozens to hundreds of trees, or simply close
the Individual AD view and achieve fast response time by
relying solely on the Cluster AD view. Addressing these al-
gorithmic bottlenecks in future work would allow studies to
determine the perceptual scalability limits of our approach.

10 CONCLUSION AND FUTURE WORK

In this paper, we provide task and data abstractions for the
problem of one-to-many tree comparison in the domain of
phylogeny. We propose a new technique, the aggregated
dendrogram, to summarize the topological relationships
between focal subtrees via a simple, intuitive, and effective
representation. We provide an algorithm that adapts to

available screen space. We present the design and imple-
mention of ADView, which provides insight into a tree
collection of hundreds of trees at five levels of detail: the
full collection, a subset of trees, single tree, subtree, and
individual tree branches. We validate our approach with
empirical benchmarks, direct comparison to the most sim-
ilar previous system [5], usage scenarios, and an interview
study conducted with five domain experts including case
studies with their findings from using the system.

Extending ADView to handle duplicate leaf nodes,
which arise from common evolutionary events such as gene
duplication, would be an excellent and challenging direction
for future work. It would also be interesting to see what
aspects of ADView are useful in general tree comparison
problems outside of the phylogeny domain.
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